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Abstract

This paper addresses the problem of developing an on-line diagnostic system for mechanical quality control of household
appliances. The selection of a suitable measurement technique for feature extraction is discussed; the choice of a laser
Doppler vibrometer technique and a laboratory measurement station for washing machines is presented. Vibration velocity
and displacement are measured over a grid of points on the machine surface and data are stored in a database suitable for
processing, both with good appliances and with defect ones with known defects. Features from the vibration velocity
spectrum are used as the input to a likelihood classifier, which is shown to achieve very good classification scores.  1999
Elsevier Science Ltd. All rights reserved.
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1. Introduction while artificial intelligence is maturing, sophisticated
automatic quality control systems are becoming part

Quality control of finished products is an essential of standard production lines. An area where such
part of the manufacturing process. Even though ideas have been applied is acoustic quality control.
manufacturing has benefited from recent advances in For example, in ceramic tile production, the sound of
automation and robotics, and thus has been able to a hammer hitting a tile, is used by a human to decide
reach a point of complete automation, quality control on its quality. Meier et al. [1] have used fuzzy data
largely still relies on human operators and expertise. analysis methods to investigate the possibility of
This is partly due to the nature of the problem, which developing an automatic quality control system for
is quite complex and requires the combination of ceramic tiles. Lukovich et al. [2] employed neural
advanced sensor technology and highly sophisticated network classifiers for micro-mechanical equipment
artificial intelligence techniques. Recently, however, diagnostics and micro-mechanical product quality
thanks to measurement system developments, and inspection. The use of acoustic signals is also used

here, in addition to various other texture features.
Fogliardi [3], used a Fuzzy C-Means algorithm for*Corresponding author. Tel.: 139-71-220-4442; fax: 139-71-
diagnostics of inductive motors characterised by220-4801.

E-mail address: lorenzo@mehp1.cineca.it (L. Scalise) undesired noise due to rotor shaft vibrations. This
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work is quite similar to ours but uses an acoustic such as the automotive industry, as well as to the
signal instead of a vibration one and is therefore general field of pattern recognition.
subject to disturbances in an industrial environment.
Li and Wu [4] developed an on-line bearing moni-
toring system based on pattern recognition of bearing 2. Instrumentation and methods
vibration signals.

Household appliances represent an interesting test 2.1. The measurement technique requirements
case for diagnostic systems aimed at on-line quality
control. In fact, although such products are character- Mechanical diagnostics is traditionally performed
ised by a relatively low technological level and by vibration and acoustic measurements [5–7]. The
consequently a relatively low cost, the large number proposed system is aimed at the industry of house-
of pieces produced (in the range of 4000–5000/day hold appliances, in particular washing machines
in a medium-size plant), the dimension of the market (WMs) and dishwashers (DWs). The measurement
and the competition among different manufacturers technique employed for data extraction will have to
together with the increasing quality demand from the satisfy several requirements and specifications and
customers, all together fully justify investments in need to cope with the production system in terms of
systems for on-line quality control. environment and logistics. In large industrial plants

Household appliances have many electromechani- working at full capacity, only about 2 min will be
cal subsystems which may have faults or may be available for testing each machine. Each machine
improperly assembled. It should be emphasized that will approach the test station on a pallet, then it will
the products have several moving parts and therefore stop and be prepared for functionality tests. Testing
mechanical defects strongly affect overall perform- time has to be divided into three main phases:
ance, both in terms of functionality and in terms of machine set-up and connection to the power supply,
vibro-acoustic comfort. The present state of the art, actuators and sensing system; machine operation
in terms of on-line industrial quality control on the during test according to a prescribed sequence; and,
fully assembled appliance, is generally limited to finally, stopping of the machine and disassembling
tests of the electrical parts of the machine; no from the test station.
mechanical diagnosis is at present carried out, al- The production factory environment is very hostile
though a large variety of mechanical defects are and is characterised by extremely high levels of
present in the final product. acoustic noise. Vibration may also be high. The

In this paper we present such a system, which uses humidity and temperature ranges are normal, but
a measurement subsystem equipped with a laser electromagnetic disturbances, both radiated and con-
Doppler vibrometer to produce extremely accurate ducted, may be high, due to the many electrical and
vibration measurements, coupled to a data analysis electronic devices operating on the production line.
engine which extracts appropriate features and clas- Household appliances may exhibit several me-
sifies them into predefined fault classes. The whole chanical defects. It is necessary to measure vibra-
project is a collaboration of six research partners tions at various locations on the machine casing in
within a European founded project (MEDEA) and order to detect them. Therefore, the measurement
aims at the development of a non-contact diagnostic system must be designed either as an array of sensors
system for mechanical testing of household ap- or a scanning system.
pliances; the developed system is intended for on- For an on-line diagnostic system operating in a
line operation and will be capable of testing 100% of structured environment, whose main degrees of
the production. freedom are fixed by the necessity to convey the

It is important to note that although what was machine inside and outside of the test station and
developed is intended to be used for household putting it into operation, it is relevant to have the
appliances, most of the ideas underlying this project availability of a sensing system which can be
can be applied to other important industrial sectors, automatically positioned at the chosen measurement



N. Paone et al. / Measurement 25 (1999) 237 –247 239

locations. The last, but not least, fact to be consid- as a solution to many of the problems related to
ered is that the household machine under test is a intrusiveness, automatic positioning and the time
finished product which has functional and aesthetic needed to measure. However, this type of sensor is
characteristics which need to be preserved; therefore, very sensitive to the characteristics of the target
non-invasive vibration sensing is necessary in order material, in the present case the metal foil with the
to avoid any surface damage. paint layer on it. This would imply the necessity of

There are several available measurement tech- frequent calibration of the sensor. Furthermore, most
niques for vibration sensing; in general, they mea- electromagnetic proximity sensors are strongly non-
sure displacement, velocity or acceleration and linear, have a relatively low measurement range and
eventually deformation. The choice among them must be operated at a fixed stand-off distance from
needs to take into account the aforementioned re- the target, all facts which impose the need for an
quirements. accurate positioning of the sensor with respect to the

Strain-gauges measure local deformation, but their target. In an automatic test station, where machines
application to industrial on-line diagnostics is not move in and out at a large rate, accurate sensor
feasible. In fact, their installation is time consuming, positioning should not be necessary. A further limita-
no automatic positioning is possible, and sensors are tion of these sensors is their sensitivity to electro-
invasive. Accelerometers, although widely used for magnetic disturbances, which are relevant in the
machinery diagnostics, in this case have several industrial environment. Therefore, optical proximity
limitations; it is in fact necessary to install them on sensors remain the best candidate for vibration
the machine and this procedure is difficult to auto- measurement in such conditions.
mate. Furthermore, they are invasive, causing local As part of the MEDEA project a special purpose
mass loading which is not negligible for the thin interferometer will be developed, whose cost will be
metal foils which form the household machine one order of magnitude lower than general-purpose
structure. Electromagnetic proximity sensors appear laboratory vibrometers. The idea is to employ inte-

Fig. 1. The measurement system.
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grated optics interferometers, operating in parallel ment range and bandwidth make it an ideal instru-
through a fiber link in order to access simultaneously ment for contactless vibration measurement.
a grid of points. As a result the total cost of the Measurements from the laser Doppler vibrometer
diagnostic system will be kept to a minimum. For the are acquired by two PCs; the first one records the
preliminary laboratory tests, however, a single point time signals sampled at 2000 Hz by a 12-bit A/D
laser Doppler vibrometer is employed. acquisition board, the second one is equipped with a

16-bit DSP board to produce real time spectra. Data
2.2. The measurement procedure are stored in a database ready for processing. In our

application, we have to measure displacement and
The measuring system employed in these tests is velocity from a grid of strategic points on the casing

described in Fig. 1. of the washing machine in order to produce the data
The laser Doppler vibrometer is positioned around necessary for the diagnostic system to classify the

the washing machine and it measures two quantities, machines in classes (no defect, defect A, defect B,
the velocity and displacement of vibration. etc.). A TTL signal produced by a proximity sensor

The laser Doppler vibrometer is a Mach-Zender placed in front of the pulley, is also measured. It is
interferometer; this instrument measures vibration used to calculate the drum’s rotational velocity.
velocity by demodulation of a frequency modulated Measurements are performed on a selected grid of
signal produced by heterodyning the measurement points; they are chosen on the basis of results of a
beam with a reference beam, with a 40 MHz first general study of the vibration of washing
frequency shift. The measurement beam is frequency machines. An example of measurement points is
shifted by the Doppler effect caused by the vibrating shown in Fig. 2.
object [10]. As part of this work, an optimum number of

The measurement beam can be easily displaced points is to be found. This is to be decided on the
from one measurement point to another; there exist basis of cost per sensor and classification perform-
versions of this instrument which displace the beam ance.
by moving mirrors. Therefore, on-line automatic Measurements are made according to the follow-
testing is possible and fast. The system can operate ing procedure: the machine is started and the drum
from a large distance, which does not need to be kept accelerates from 0 to its maximum angular velocity,
constant. All electronic components can be isolated then a steady state is maintained for about 16 s, and
from interfering or modifying disturbances. Vibra- finally the machine decelerates down to zero. This is
tions of the environment may be a concern, because done in order to excite vibrations of the machine at
the instrument measures with reference to its own all typical frequencies of operation. The non-contact
position; vibration isolation is possible via conven- nature of the measurements allows the experimenter
tional optical tables. Sensitivity, resolution, measure- to neglect any mass loading effects. Beam position-

Fig. 2. A possible set of measurement points on the washing machine.
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and the rotation speed measurement (rpm),Table 1
Common defects present in a washing machine (from a survey at v ( j); j 5 1, . . . , Nothe Domotecnica Appliances Fair, Cologne)

where the subscript ‘o’ stands for ‘original’. TheDefect class definitions

machines belong to l distinct classes, C ; j 5 1, . . . ,jZ: No defect
l, depending on the kind of defect present. For theB: Electric motor clamping screws (released belt)

H: Releasing the shock absorber situation at hand, N(40 000, k 5 4, l 5 5. A typical
M: Use of different types of spring time series is shown in Fig. 3; from the time signals
P: Pulley (distorted) it is practically impossible to distinguish a defect

machine [Fig. 3(B)] from a non-defect one [Fig.
3(A)].

The problem can thus be stated as follows [9]:ing is rapid so that large amounts of data can be
collected. In any case, the final version of the ‘‘Given an initial training set, find a classifier that
measurement system will employ multiple sensors could adequately classify machines measured on-line
operating simultaneously. in the production line.’’ The meaning of ‘adequately’

The defects introduced are reported in Table 1. is subjective but an acceptable figure should be over
The defects introduced are the most common 95% of correctly classified machines. Furthermore,

according to a survey carried out at one of the major in the present situation an additional objective is
European fairs, amongst all leading manufacturers. present, because of low cost requirements: find the
Firstly the no-defect measurements were performed. minimum number of sensors that fulfil the classifica-
Then the defects were manually introduced on the tion requirements.
WMs and the procedure was repeated. In such classification problems, one is usually

For each measurement point (11 points on each faced with two questions:
WM) and for each WM (5 WMs were measured) 14
measurements were performed for each defect class • What features to use as input to the classifier.
(five classes). A total of 3850 files have been • Which classifier to use.
collected in the database.

These questions can scarcely be answered easily.
2.3. Mathematical statement of the problem The usual approach is to try different combinations

of features /classifiers and choose the best pair.
As stated earlier, velocity and displacement of the It is widely accepted that a good start for feature

WM’s surface vibration are measured along with the extraction is the transformation of the time signal
WM’s drum rotation speed. Initial experiments into its frequency domain response. In this way, it is
showed an erratic behaviour of the displacement data hoped to reduce the amount of information present in
and it was decided to use only the velocity measure- the time signal to a few meaningful harmonics or
ments. Thus, our problem can be stated as follows. some other characteristic of the frequency plot. This

For a rotating machine we are given a set of N is usually accomplished by the Fourier transform.
time series representing vibration velocity measure- However, before the FFT can be carried out, the part

21ments (mm s ) from k measurement sensors, of the vibration signal that corresponds to steady-
state (stable, stationary) operation of the washingx (1)o machine, as implied by the rotation speed, must be

x (2)o extracted. This is necessary since the Fourier trans-X (i, j) 5o ? ? ?3 4 form is valid only for stationary series (the transientx (k)o part, however, can also be utilised using wavelet
x (1, 1) x (1, 2) ? ? ? x (1, N)o o o transforms). We accomplish this using the following
x (2, 1) x (2, 2) ? ? ? x (2, N) algorithm (Pouliezos and Stavrakakis, 1994 [8]).o o o5
? ? ? ? ? ? ? ? ? ? ? ? It is assumed that v ( j) is a Gaussian sequence.3 4 o
x (k, 1) x (k, 2) ? ? ? x (k, N)o o o For a given window length n, the variable
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Fig. 3. Vibration velocity signals recorded from point 6 on: (A) non-defect washing machine; and (B) defect (defect B) washing machine.

n21 sampled at high frequencies. The value that is
2O v (i 1 1) 2 v (i)s d used is 30, so that the new series has a length ofo o1 i51

]]]]]]]w 5 (1) about 1300.n2
2 • The relevant calculations are done iterativelyˆO v (i) 2 vs do o

i51 from window to window since most terms in Eq.
(1), (in fact all but two) are the same [8]. Thisnˆwhere v 5 (1 /n) o v (i) is the sample windowo i51 o greatly reduces the computational burden.mean, and has a probable value of 1. If n is bigger

than 25, the variable
Thus, implementation of this procedure gives three

]]]]] break-points on the original v ( j) series,u 5 (1 2 w) (n 2 1)(n 1 1) /2 (2) oœ

follows a zero-mean standardised Gaussian law. • b : start point for rising transient;1
Using standard hypothesis testing, the following • b : start point of steady state;2
decision rule is used: • b : end point of steady state.3

u . ´: dynamic state;
thus producing two series:

u , ´: steady state.
• v ( j) 5 hv ( j); j 5 b , . . . , b 2 1j (transientt o 1 2

The threshold ´ can be chosen considering standard part);
P (probability of correct detection) and P (prob- • v ( j) 5 hv ( j); j 5 b , . . . , b j (steady-state part).d f s o 2 3

ability of false alarm) values or by simulation.
There is, however, one drawback in this algorithm: Results of this procedure are shown in Fig. 4, with

it may be too slow for on-line operation in the a window length of 40. It shows machine rotational
particular situation considered. Two ideas are used to velocity during a test, the steady-state index and
overcome this problem: vibration velocity during steady state. The first part

of the figure shows the rotational velocity against
sample number for a machine codenamed• The original series v ( j) is undersampled so as too

‘O1az2c08’. The second part of the figure shows theproduce a shorter series. This has no effect on the
sample history of the test statistic u used to separateseparation process, since the original series is
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Fig. 4. Rotational velocity of the washing machine drum during the test procedure (upper figure); steady-state index u (middle figure);
measured vibration velocity in the steady state (lower figure).

the transient from the steady-state part of the rota-
x (1)ttional velocity series, as defined in Eq. (2). Also
x (2)tshown are the threshold (? ? ?, value520), used for X (i, j) 5t ? ? ?3 4deciding whether the rotational velocity series is in x (k)t

the dynamic or static condition, and the two break
x (1, 1) x (1, 2) ? ? ? x (1, N)t t tpoints (indicated by the vertical lines on all graphs),
x (2, 1) x (2, 2) ? ? ? x (2, N)t t tb and b , which specify the start and finish of the 5 (transient part)2 3
? ? ? ? ? ? ? ? ? ? ? ?3 4steady-state part. The third and fourth parts of the
x (k, 1) x (k, 2) ? ? ? x (k, N)t t tfigure show the series v ( j) and v ( j), i.e. thes t

corresponding steady state and transient part of the x (1)s
vibration velocity time series. x (2)sX (i, j) 5sAs can be seen the results are not quite as ? ? ?3 4
expected, since u does not seem to be zero mean. x (k)s

One possible explanation may be that the assumption x (1, 1) x (1, 2) ? ? ? x (1, N)s s sof being Gaussian is not valid. This problem was
x (2, 1) x (2, 2) ? ? ? x (2, N)s s s5 (steady-state part)overcome by raising the threshold to ´520. ? ? ? ? ? ? ? ? ? ? ? ?3 4Now using the transient and steady-state parts of x (k, 1) x (k, 2) ? ? ? x (k, N)s s s

the rotational velocity series, the transient and
steady-state parts of the vibration velocity series (for Having broken the original time-series into its
each measurement point i) are extracted, transient and steady-state parts, the question arises as
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to what features to consider for each part, i.e. a in this range, in fact, that the mechanical and
feature vector, structural frequencies in washing machines of inter-

est are found. Having obtained the FFT transformf ft X (i) of x (i) the next question refers to whichf 5 s sF Gfs characteristics could be used as features. In the
relevant literature there exist numerous suggestionsis sought, where f is the feature vector corre-t
and it is a matter of examining the problem at hand,sponding to the transient part and f to the steady-s
and trial and error techniques, in order to arrive at anstate part. The structures of f and f are as follows:t s
appropriate set. One of the issues that must be faced

Tf (1, 1) f (1, 2) ? ? ? f (1, n )f (1) f gt t t tt is by which procedure one decides which set of
Tf (2) f (2, 1) f (2, 2) ? ? ? f (2, n )f gt t t t t features is ‘best’. An obvious answer would be: ‘thef 5 5t ? ? ? ? ? ?3 4 3 4 set which best classifies the machines’. Thus, theTf (k) f (k, 1) f (k, 2) ? ? ? f (k, n )t f gt t t t

problem of feature selection is coupled to theTf (1, 1) f (1, 2) ? ? ? f (1, n )f (1) f gs s s ss

problem of classifier selection. If one is to chooseTf (2) f (2, 1) f (2, 2) ? ? ? f (2, n )f gs s s s sf 5 5s ? ? ? amongst n feature sets and m classifiers, then nm? ? ?3 4 3 4
Tf (k) f (k, 1) f (k, 2) ? ? ? f (k, n )s f gs s s s couples should be considered. Since our training set

is rather small, we adopted the following verificationThe sizes n , n of each feature sub-vector are to bet s procedure:determined, i.e. the total size of the feature vector is
for each feature set i and classifier jkn 1 kn .t s for each machine kSince x (i) and x (i) have different but knownt s train the classifier using N21 machinesstatistical properties, i.e. the first is non-stationary

and leaving machine k outwhile the second stationary, the first step towards
present machine k to the classifierfeature extraction is largely dictated by these prop-

calculate machines correctly classifiederties. Therefore, x (i) may be transformed usingt The ratio p5(machines correctly classified/N)wavelet transforms while x (i) may be transformeds then gives an indication of the relative merit of eachusing Fourier transforms. Preliminary results of the
(feature set)–classifier pair. The pair with the higheststeady-state part have produced extremely good
ratio is then selected as the optimum. Furthermore,results, so this approach will be now presented.
since, as stated earlier, the number of sensors mustFrom the series x (i) we thus obtain a normaliseds be optimum, the above procedure was repeated fortransformed series,
various combinations of measurement points, and the

fX (i) 5 2 c(i) /N ; i 5 1, . . . , N best combination selected for final adoption.u us f f

where, c(i) is the (complex) coefficient of the Fourier
series expansion of f(i), i.e.

3. Results
N 21f1 ( j2)km) / Nf]f(m) 5 O c(k) e ; m 5 1, 2, . . . , Nf Several tests were run to get a first idea as toNf k50

which features could be significant. Experiments
and N is the length of the series. This form has the with a number of possibilities for FFT characteristicsf

advantage that the amplitudes in the time series are were performed, such as,
preserved in the frequency spectrum, e.g. a unit
sinusoid in the time domain has a unit coefficient in • spectrum peaks;
the frequency domain. Because of computational • frequencies where spectrum peaks occur;
speed we choose N to be a power of 2:f • energy content of spectrum slices;

• peaks at odd harmonics . . .N 5 16384f

as well as with a number of classifiers, such as,The frequency range of interest is 0–200 Hz. It is
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Table 2• c-means;
Reclassification results for different combinations of measurement• fuzzy c-means;
point combination• distances (Euclidean, Mahalanobis, Bayes);
Points Correct Percentage• likelihood;

• ANFIS . . . Two classes
1, 2 256 0.9481
1, 6, 9 261 0.9667Results showed that the best combination is:
1, 2, 6, 9 261 0.9667

• peaks at odd harmonics classified by likelihood Five classes
6, 8 260 0.9630methods.
2, 8, 9 262 0.9704
1, 2, 6, 9 257 0.9519

Odd harmonics are odd multiples of the base
harmonic which occurs at (steady-state rpm/60)¯
400/6056.7. The likelihood classifier is a super-

The best combination (2, 8, 9) produced thevised learning method. Details are described in
results reported in Table 3 for each class.Appendix A.

The eight first odd harmonics were calculated and
the peaks within a narrow band around them were

4. Discussion and conclusionfound. The measurement points used were (1, 2, 6, 8,
9) as in these points there existed a full, compatible

A laboratory test station based on a laser Dopplermeasurement set. The defect class set was,
vibrometer suited to fault detection and classification

C 5 hZ, B, H, M, Pjj of washing machines, and utilising measurements of
vibration velocity or displacement, has been de-The total number of machines for the five points
veloped.were 270. Prior probabilities for each class are

The laser Doppler vibrometer plays a fundamentalcalculated using the frequency formula (for the case
role in permitting the design of a test system capablewhere a machine type Z is left out for generalisa-
of non-contact measurement on many points, in ation):
hostile environment; the optical instrument allows

65 65 60 40 40 also multipoint fast measurements, which is a re-] ] ] ] ]H Jp 5j 269 269 269 269 269 quirement of the system for industrial application.
5 0.24 0.24 0.222 0.148 0.148h j The data from the measurement subsystem is fed

to the computer-based feature extraction and classifi-If only the detection of a defective (X) or a non-
cation subsystem for subsequent diagnosis of thedefective machine is required, the class list is
state of the washing machine under test. Preliminary

C 5 hZ, Xjj
Table 3
Reclassification results for each class using the optimum measure-where,
ment point combination

X 5 hB, H, M, Pj
Five classes

with prior probabilities (in the case where a type Z is Class Machines Correctly Percentage
in sample classifiedleft out)

Z 65 63 0.969265 205
B 65 62 0.9538] ]H Jp 5 5 0.24 0.76h jj 269 270 H 60 59 0.9833
M 40 39 0.9750We experimented with different combinations of 2, 3
P 40 39 0.9750

and 4 measurement points, with the results reported
Total 270 262 0.9704in Table 2 (only the best combination is shown).
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results, using odd harmonics peaks as features and a we calculate the mean vector (i.e. the class centre,
likelihood classifier, were very satisfactory. Data
processing of signals coming from a strategical set of N21

imeasuring points have permitted 97% success rates O f (2, 1)s 
i51in fault detection. Percentages of 95%, in the worst
? ? ?case, and 97% in the best case, have been obtained in  N21

ithe identification of the class of the defect. O f (2, 8)s i51The procedure and the technique developed have
N21been designed to be used in on-line operation. iO f (8, 1) sResults obtained are going to be used for the final
i511jprototype, which will be used on a washing machine ? ? ?]]m 5s  N 2 1 N21production line.
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ji m (1)O f (9)  ss

i51 j1The feature vector finally adopted is m (2)s? ? ?]]5 5 N 2 1 ? ? ?N21f (2, 1) 3 4s i jO f (16) m (24)? ? ?  s s i51f (2, 8)s N21  if (2)  f (8, 1)s O f (17)s s
i51f (8) ? ? ?f 5 5ss   ? ? ?3 4  f (8, 8)f (9) s N21s

if (9, 1) s O f (24) s 
i51? ? ?

f (9, 8) s

where (2, 8, 9) refer to the optimum triple of (where the superscript i denotes sample number and j
measurement points. The classifier works as follows. class number) and covariance matrix (i.e. class

For each training set of N 2 1 machines for class j dispersion)

N21 N21 N21
i j 2 i j i j i j i jO f (1) 2 m (1) O f (1) 2 m (1) f (2) 2 m (2) ? ? ? O f (1) 2 m (1) f (24) 2 m (24)s d s ds d s ds ds s s s s s s s s s

i51 i51 i51

N21 N21 N21
i j i j i j 2 i j i j1j O f (1) 2 m (1) f (2) 2 m (2) O f (2) 2 m (2) ? ? ? O f (2) 2 m (2) f (24) 2 m (24)s ds d s d s ds ds s s s s s s s s s]C 5s i51 i51 i51N 2 2

? ? ? ? ? ? ? ? ? ? ? ?3N21 N21 N21 4
i j i j i j i j i j 2O f (1) 2 m (1) f (24) 2 m (24) O f (24) 2 m (24) f (2) 2 m (2) ? ? ? O f (24) 2 m (24)s ds d s ds d s ds s s s s s s s s s

i51 i51 i51
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The prior probabilities for each class p , are also ,(1)j 1
? ? ?]]]calculated from, L ( j) 5n l F G
,(l)O ,( j)p 5 N /N 2 1j j j51

where N is the total number of machines belongingj The jth element of this vector is the likelihood that
to class j, used in the training set. The training set is the machine belongs to class j. Therefore, the
composed of N21 machines, then for the remaining decision is made that the machine belongs to the
Nth machine, the feature vector is calculated class that has the maximum likelihood

Nf (1)s (class index) 5max ,( j)s dN j? ? ?f 5s 3 4Nf (24)s
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