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Abstract: In this study, piezoelectric patches are used as actuators to dampen structural oscillations. 
Damping oscillations is a significant engineering challenge, and the use of piezoelectric patches in 
smart structures allows for a reduction in oscillations through sophisticated control methods. This 
analysis involved H-infinity (H∞) robust analysis. H∞ (H-infinity) control formulation is a robust 
control design method used to ensure system stability and performance under disturbances. When 
applied to piezoelectric actuators in smart structures, H∞ control aims to design controllers that are 
robust to variations in system dynamics, external disturbances, and modeling uncertainties, while 
meeting specified performance criteria. This study outlines the piezoelectric effects and advanced 
control strategies. A structural model was created using finite elements, and a smart structural 
model was analyzed. Subsequently, dynamic loads were applied and oscillation damping was suc-
cessfully achieved by employing advanced control techniques. 
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1. Introduction 
Recently, there has been a significant focus on smart structures [1–4]. An intelligent 

structure is characterized by its ability to detect mechanical disruptions and respond au-
tomatically by minimizing oscillations [5–9]. This study introduces a smart structure fea-
turing integrated actuators and sensors designed to dampen oscillations. The structure 
was analyzed under dynamic loads, such as wind forces, using finite element methods. 
Advanced examination methods such as robust control theory were employed in this 
study [10–14]. 

The development of control strategies for piezoelectric smart structures presents sev-
eral challenges. To provide efficient and cost-effective active control, extensive research 
has been conducted on the use of piezoelectric materials in systems with dispersed pa-
rameters [13–17]. Utilizing distributed piezoelectric material-based sensors and actuators 
with adaptable properties enables the active regulation of dynamic systems [18–23]. This 
study explores the critical considerations that structural control engineers must address 
when devising reliable control methods. In the field of engineering, control theory is a 
commonly applied method for material optimization [9,12], as evidenced by previous 
studies [9–14,24]. Robust control techniques have been effectively utilized in intelligent 
materials [15–23,25]. In this context, we focused on the application of piezoelectric com-
ponents. The discovery of piezoelectricity originated in 1880 when the Curie brothers 
(Pierre and Jacques) observed the generation of electric fields in quartz crystals subjected 
to mechanical forces. The term “piezo” originates from the Greek word meaning “press” 
[1–9]. 
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Piezoelectric materials are pivotal components of smart structures because of their 
distinctive capability to transform mechanical energy into electrical energy, and inversely 
[1–8]. This distinctive property enables a wide range of applications of piezoelectric ma-
terials in smart structures, including sensing, actuation, and energy harvesting function-
alities [25–32]. There are some key insights about piezoelectric materials in smart struc-
tures: for sensing functionality, piezoelectric materials are frequently utilized as sensors 
in smart structures to detect mechanical parameters, such as stress, strain, pressure, or 
vibrations; the use of piezo elements in the vibration measurement of objects with nonlin-
ear characteristics, such as drones; and the use of piezoelectric elements for the vibration 
measurements of objects with unusual shapes and nonlinear characteristics has been pre-
sented in the literature [33,34]. These studies indicate new possibilities for the application 
of piezoelectric elements in the measurement of object vibrations. 

When subjected to mechanical stress, a piezoelectric material generates an electric 
charge proportional to the applied stress. This characteristic makes piezoelectric sensors 
well-suited for monitoring structural health, identifying damage, or measuring dynamic 
loads within a structure [35–39]. Actuation Capabilities [35–41]: In addition to their sens-
ing capabilities, piezoelectric materials are also deployed as actuators in smart structures. 
When an electrical signal is applied to a piezoelectric material, it undergoes mechanical 
deformation or vibrations. This deformation can be harnessed to control the shape, posi-
tion, and damping properties of the structure. Piezoelectric actuators offer precise and 
responsive control, making them valuable for active vibration control, shape morphing, 
and structural adjustments in smart systems. Integration and Versatility [29–32,35]: Piezo-
electric materials are highly adaptable and can be integrated into various structural ele-
ments, including beams, panels, and composites, without significantly altering the overall 
design or performance of the structure. This versatility allows the seamless incorporation 
of piezoelectric functionalities into existing or new smart structures, thereby enhancing 
their functionality, responsiveness, and overall performance. 

In summary, piezoelectric materials play a pivotal role in smart structures by offering 
sensing, actuation, and energy harvesting capabilities [1–8]. Their unique properties make 
them indispensable components for enhancing structural monitoring, control, and energy 
efficiency in a wide range of applications. Piezoelectricity serves as a bridge between the 
electric and elastic fields, facilitating the evaluation of resilience, optimal placement, and 
structural modeling under uncertain conditions [35–41]. 

The reduction in vibrations under dynamic and unpredictable stresses constitutes a 
crucial engineering issue, and this challenge was investigated in our work. Vibrations play 
a critical role in systems of engineering due to the fact that they have been associated with 
material exhaustion, which can result in catastrophic failures and the premature failure of 
components [39–44]. This paper presents innovations in the control of piezoelectric struc-
tures. Comparative results are provided, and the complete suppression of oscillations is 
achieved. This has not been performed in any of the studies presented in the references. 
In this case, the oscillations are partially suppressed, as in previous works [15–17,29,30]. 
Advanced control techniques were used to completely suppress oscillations. Other studies 
have used simpler control techniques [16,17,30]. In our work, we use infinity control the-
ory. In the present study, we achieved complete oscillation suppression using two meth-
ods of control, notably employing H∞ control. Initially, we modeled a smart structure 
featuring a combination of piezoelectric systems that act as sensors and actuators. Subse-
quently, we optimized their placement within the structure [41–46]. 

Simplifying the models enables the utilization of complex control methods, especially 
given that the presented controller is fairly satisfactory, specifically of the order of 36. All 
simulations were conducted using MATLAB v.13 (Mathworks, Natick, Massachusetts, 
United States) with proficient programming methodologies. 

Our approach considers the modeling uncertainties and measurement noise, fol-
lowed by the application of advanced control techniques. H∞ (H-infinity) control, which 
is known for its robustness against uncertainties, disturbances, and variations, was used 
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in our system design. This control methodology specifically addresses the uncertainties 
stemming from the electromechanical properties of piezoelectric materials, system dy-
namics, external disturbances, and modeling inaccuracies [41–45]. In other studies, ad-
vanced control techniques were not used, but simpler choices were applied that did not 
yield such good results [16,17,30]. 

The core principle of H∞ control is structured singular value analysis, which is often 
referred to as µ analysis. This analysis quantifies and manages the uncertainties within a 
system by evaluating the structured singular value, denoted as the structural singular 
value, µ. The µ value represents the worst-case uncertainty magnitude capable of desta-
bilizing the system. By optimizing the controller design to minimize µ, H∞ control ensures 
robustness within specified uncertainty bounds, making it suitable for systems such as 
those incorporating piezoelectric actuators in smart structures [41–45]. 

2. Materials and Methods 
2.1. Piezoelectric Materials 

Conventional electromechanical coefficients of piezoelectric materials, as measured 
by using standard methods or provided by manufacturers, lose their descriptive power 
when the electric field exceeds a specific nonlinearity threshold [46,47]. Both piezoelectric 
and dielectric factors increase as the applied electric field intensifies [46–49]. This field-
dependent behavior was modeled based on the underlying mechanism driving such non-
linearity as well as the specific piezoelectric response pattern under investigation. The pi-
ezoelectric longitudinal response is described by Rayleigh’s law, which is derived from 
thermodynamic principles, in one of the models of field-dependent piezoelectric nonline-
arity [47–49]. 

Similar modeling approaches have also been applied to describe the dielectric re-
sponse: d31 E = di + acp E [46–49]. Parameter di represents the primary strain (or charge) 
piezoelectric connection factor, and αcp denotes the Rayleigh coefficient related to the 
converse piezoelectric (cp) effect. However, the linear correlation between the piezoelec-
tric coupling coefficient, d, and the amplitude of the applied alternating current (AC) elec-
tric field, E, did not accurately match the experimental results for various soft piezoceram-
ics exhibiting transverse response modes [46]. Consequently, an innovative mathematical 
approach was proposed in a previous study, wherein ceramics exhibited behavior similar 
to that of a hysteretic transducer. This model encompasses Rayleigh’s law as a special case 
study. In another study [47–49], it was postulated that the observed hysteretic changes in 
electromechanical properties stem from the field-dependent mechanical tension in the 
partially restricted crystallites of ceramics at the boundaries between domains. Addition-
ally, using the electric pulse technique [48], it was discovered that irreversible alterations 
in remnant polarization occur even at electric fields significantly below the coercive 
threshold. This perspective contrasts with theories centered on 90° reorientation or tetrag-
onal/rhombohedral phase boundary motion and argues that the high-field behavior of 
soft piezoceramics arises from hysteresis due to polarization reorientation (switching) 
[45–49]. 

2.2. Smart Structures 
This analytical investigation explored the viability of integrating co-localized actua-

tor pairs utilizing a transverse (d31)-mode piezoceramic (PZT G-1195) into beam coupons 
made of metallic (aluminum) and laminated composite materials (glass/epoxy and graph-
ite/epoxy). Both surface-bonded and embedded configurations have also been examined 
[46,49]. 

The results indicate that the embedded graphite/epoxy composite smart beam with 
piezoceramics exhibited a linear response with increasing applied voltage. However, non-
linear deflection–voltage curves were observed in other smart beams. The aluminum 
beam featuring symmetrically surface-bonded actuator pairs demonstrated a reasonable 
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model–test correlation, whereas the piezoceramic-embedded glass/epoxy composite 
smart beam showed a significant deviation from linearity. 

In our simulation, we utilized piezoceramic (PZT G-1195) co-localized actuator pairs 
embedded in metallic (aluminum) and laminated composite (glass/epoxy and graph-
ite/epoxy) beams [45–49]. 

2.3. Motion Equation of the Intelligent Structure 
The beam equation for electrical and mechanical loading is given by [19–22,37] 

                               𝐸𝐸𝐸𝐸
𝜕𝜕4𝑦𝑦(𝑡𝑡, 𝑥𝑥)
𝜕𝜕𝑥𝑥4

+ 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜕𝜕2𝑦𝑦(𝑡𝑡, 𝑥𝑥)
𝜕𝜕𝑡𝑡2

= 𝑓𝑓𝑚𝑚(𝑡𝑡, 𝑥𝑥) + 𝑓𝑓𝑒𝑒(𝑡𝑡, 𝑥𝑥) (1) 

Figures 1 and 2 illustrate a smart beam with an integrated piezoelectric actuator that 
outputs a mechanical force when given an electrical input [38–44]. The electric force fe(t,x) 
of the piezoelectric activator was determined as follows: 

 𝑓𝑓𝑒𝑒(𝑡𝑡, 𝑥𝑥) =
𝜕𝜕2𝑀𝑀𝑝𝑝𝑝𝑝(𝑡𝑡, 𝑥𝑥)

𝜕𝜕𝑥𝑥2
 (2) 

where Mpx indicates the torsion of the piezoelectric actuator. 

 
Figure 1. Beam with an installed piezoelectric patch. 

 
Figure 2. Piezoelectric section j inserted within the beam. 

The transfer function H indicates the placement of the piezoelectric patch Pzt on the 
beam. The torsion Mpx is given by 

𝑀𝑀𝑝𝑝𝑝𝑝(𝑡𝑡, 𝑥𝑥) = 𝐶𝐶0𝑒𝑒𝑝𝑝𝑝𝑝(𝑡𝑡)[𝐻𝐻�𝑟𝑟 − 𝑟𝑟1𝑗𝑗� − 𝐻𝐻�𝑟𝑟 − 𝑟𝑟2𝑗𝑗�]𝑢𝑢𝑗𝑗(𝑡𝑡) (3) 
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where [18,19] 

   𝐶𝐶0 = 𝐸𝐸𝐸𝐸 ∙ 𝐾𝐾𝑓𝑓 (4) 

 𝐾𝐾𝑓𝑓 =
12𝐸𝐸𝐸𝐸𝑝𝑝ℎℎ𝑝𝑝(2ℎ + ℎ𝑝𝑝)

16𝐸𝐸2ℎ4 + 𝐸𝐸𝐸𝐸𝑝𝑝�32ℎ3ℎ𝑝𝑝 + 24ℎ2ℎ𝑝𝑝2 + 8ℎℎ𝑝𝑝3� + 𝐸𝐸𝑝𝑝2ℎ𝑝𝑝4
 (5) 

The piezoelectric patch’s mechanical tension epe(t) is determined by 

   𝑒𝑒𝑝𝑝𝑝𝑝(𝑡𝑡) =
𝑑𝑑31
ℎ𝑝𝑝

𝑢𝑢𝑗𝑗(𝑡𝑡) (6) 

Thus, Equation (3) can be expressed as 

𝑀𝑀𝑝𝑝𝑝𝑝(𝑡𝑡, 𝑥𝑥) = 𝐶𝐶𝑝𝑝[𝐻𝐻�𝑟𝑟 − 𝑟𝑟1𝑗𝑗� − 𝐻𝐻�𝑟𝑟 − 𝑟𝑟2𝑗𝑗�]𝑢𝑢𝑗𝑗(𝑡𝑡) (7) 

where 

    𝐶𝐶𝑝𝑝 = 𝐸𝐸𝐸𝐸𝐾𝐾𝑓𝑓
𝑑𝑑31
ℎ𝑝𝑝

  

After partial production in Equation (2), using (3), the electric force is given by 

 𝑓𝑓𝑒𝑒(𝑡𝑡, 𝑥𝑥) = 𝐶𝐶𝑝𝑝𝑢𝑢𝑎𝑎𝑎𝑎(𝑡𝑡)[𝛿𝛿′�𝑟𝑟 − 𝑟𝑟1𝑗𝑗� − 𝛿𝛿′�𝑟𝑟 − 𝑟𝑟2𝑗𝑗�] (8) 

where 

      � 𝛿𝛿(𝑛𝑛)(𝑡𝑡 − 𝜃𝜃)𝜑𝜑(𝑡𝑡) = (−1)𝑛𝑛𝜑𝜑(𝑛𝑛)(𝜃𝜃)
∞

−∞
  

By applying Equations (1) and (8), the equation describing the response of the smart 
beam to the vertical dynamic disturbance q0(t) and the electrical dynamic force resulting 
from the piezoelectric patch is derived as follows: 

  𝐸𝐸𝐸𝐸
𝜕𝜕4𝑦𝑦(𝑡𝑡, 𝑥𝑥)
𝜕𝜕𝑥𝑥4

+ 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜕𝜕2𝑦𝑦(𝑡𝑡, 𝑥𝑥)
𝜕𝜕𝑡𝑡2

= 𝑞𝑞0(𝑡𝑡) + 𝐶𝐶𝑝𝑝𝑢𝑢𝑗𝑗(𝑡𝑡)[𝛿𝛿′�𝑟𝑟 − 𝑟𝑟1𝑗𝑗� − 𝛿𝛿′�𝑟𝑟 − 𝑟𝑟2𝑗𝑗�] (9) 

For j similar piezoelectric (Figure 3) Equation (9) transforms to 

  𝐸𝐸𝐸𝐸 𝜕𝜕
4𝑦𝑦(𝑡𝑡,𝑥𝑥)
𝜕𝜕𝑥𝑥4

+ 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 𝜕𝜕2𝑦𝑦(𝑡𝑡,𝑥𝑥)
𝜕𝜕𝑡𝑡2

= 𝑞𝑞0(𝑡𝑡) + 𝐶𝐶𝑝𝑝𝑢𝑢𝑗𝑗(𝑡𝑡)∑ [𝛿𝛿′�𝑟𝑟 − 𝑟𝑟1𝑗𝑗� − 𝛿𝛿′�𝑟𝑟 − 𝑟𝑟2𝑗𝑗�]𝑗𝑗
𝑖𝑖=1   (10) 

 
Figure 3. Smart beam equipped with integrated piezoelectric actuators and sensors. 

2.4. Modeling 
This study focuses on reducing oscillations through the application of piezoelectric 

materials and complex control methods. Specifically, the placement of the piezoelectric 
actuators was considered. The actuators in Figure 4 are positioned throughout the beam, 
covering all positions labeled 1, 2, 3, and 4. 

The system’s dynamical description is provided by [18–23] 
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M𝑞̈𝑞(𝑡𝑡)  +  D𝑞̇𝑞(𝑡𝑡)  +  Kq(t) = fm(t) + fe(t) (11) 

where fm represents the global external loading mechanical vector, K is the global stiffness 
matrix, M is the global mass matrix, D is the viscous damping matrix, and fe is the global 
control force vector resulting from electromechanical coupling effects. The rotations wi 
and transversal deflections ψi comprise the independent variable q(t), or 

q(t) =

⎣
⎢
⎢
⎢
⎡
w1
ψ1
⋮

wn
ψn⎦
⎥
⎥
⎥
⎤
 (12) 

where n indicates the number of finite elements used in the analysis [36–39]. Let us convert 
(as is customary) to a state-space control representation [11–17]. 

x(t) = �q(t)
q̇(t)�  

=�
02n×n

M−1(fm(t) + fe(t)� + �
q̇(t)

−M−1Dq̇(t) − M−1Kq(t)�  

=�
02n×n

M−1(fm + fe)(t)� + � 02n×2n
−M−1K

I2n×2n
−M−1D

� �q(t)
q̇(t)�  

=�
02n×n

M−1fm(t)� + �
02n×n

M−1fe(t)� + � 02n×2n
−M−1K

I2n×2n
−M−1D

� �q(t)
q̇(t)� (13) 

 
Figure 4. Positions 2 and 4 are where the actuators are alternately positioned. 

In addition, fe(t) is designated as where (2n × n) is the piezoelectric force of a unit 
placed on a suitable actuator. 
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Fe(t) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0
𝑐𝑐𝑐𝑐
0
0
0
0
0
0

0
−𝑐𝑐𝑐𝑐

0
𝑐𝑐𝑐𝑐
0
0
0
0

0
0
0
−𝑐𝑐𝑐𝑐

0
𝑐𝑐𝑐𝑐
0
0

0
0
0
0
0
−𝑐𝑐𝑐𝑐

0
𝑐𝑐𝑐𝑐 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (14) 

where u denotes actuator voltage. Finally, d(t) = fm(t) denotes a disturbance vector. Then, 

ẋ(t) = � 02n×2n I2n×2n
−M−1K −M−1D

� x(t) + �
02n×n
M−1Fe∗

� u(t) + �02n×2n
M−1 �d(t)  

= Αx(t) + Βu(t) + Gd(t)  

= Ax(t) + [B G] �u(t)
d(t)�  

= Ax(t) + B�u�(t), (15) 

Using the output equation (only displacements are measured), this can be improved. 

y(t) = [x1(t) x3(t) … xn−1(t)]T = Cx(t)  

where 

C = [1 0 0...0; −1 0 1 0...0; 0 0 −1 0 1 ...0; 0 0 0 0 −1 0 1 ...0]  

The piezoelectric effect converts mechanical stress into strain, and strain into mechan-
ical stress. This is the basis for the suppression of oscillations achieved in this work [4–8]. 

In our simulation, we used co-localized actuator pairs with piezoceramic (PZT G-
1195) in both metallic (aluminum) and laminated composite (glass/epoxy, graphite/epoxy) 
beams (Figure 5). The parameters of the smart beam are presented in Table 1. 

Table 1. Parameters of the smart beam. 

Parameters Values 
L, for beam length 1.20 m 
W, for beam Width 0.08 m 

h, for beam thickness 0.02 m 
ρ, for beam density 1700 kg/m3 

E, for Young’s modulus of the beam 1.6 × 1011 N/m2 
bs, ba, for Pzt thickness 0.002 m 

d31 the Piezoelectric constant 280 × 10−12 m/V 

 
Figure 5. The actuators were placed across the beam. 
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2.5. Robustness Issues 
H∞ control stands out because it explicitly considers the most detrimental impact 

caused by unknown disturbances and noise within a system. Theoretically, it is feasible 
to design an H∞ controller that is robust against a predetermined level of modeling inac-
curacies. However, this potential is not always feasible, as will be elaborated upon later 
[41–45]. 

Figures 6 and 7 show the block diagrams of the intelligent beam system. Here, Ks 
represents the controller, w signifies the inputs, including disturbances and noise (n), z 
represents the output state vectors, P denotes the smart beam itself, and u signifies the 
applied control force [39–45]. 

 
Figure 6. Block diagram of the smart structure. 

 
Figure 7. A more analytical block diagram of the smart structure. 

We proceed with the following methodology to account for the uncertainty in matri-
ces M and K. 

K = K0(I + kpI2n×2nδK) 

M = M0(I + mpI2n×2nδM) 
(16) 

Furthermore, since D = 0.0005(K + M), a suitable form for D is 

D = 0.0005[K0(I + kpI2n×2nδK) + M0(I + mpI2n×2nδM)] =  

D0 = 0.0005K0 + 0.0005M0 

D0 + 0.0005[K0kpI2n×2nδK + M0mpI2n×2nδM] 

(17) 

The damping matrix (D) characterizes the damping properties of the structure, with 
damping typically being a small proportion compared to the mass and stiffness matrices. 
Experimental investigations have determined this proportion to be 0.0005 for both mass 
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and stiffness matrices, as referenced in [27]. Notably, lower damping values make it more 
difficult to effectively dampen the vibrations of a structure, as discussed in [26–28]. 

However, it is generally understood that 

D = α K + β M  

The structural damping matrix D is expressed as a linear combination of the mass 
matrix (M) and the stiffness matrix (K), and is commonly referred to as Rayleigh damping. 
In this framework, the coefficients α and β are determined based on the analysis of the 
first and second normal modes of vibration, with both coefficients typically set at 0.0005. 
Therefore, the formulation of D can be structured in a manner similar to how the stiffness 
matrix (K) and mass matrix (M) are typically represented as follows: 

D = D0 (I + dpI2n×2nδD) (18) 

We incorporated uncertainty into the relevant matrices by introducing proportional 
deviations. This method of addressing uncertainty is notably effective in our scenario, 
given that length measurements can be performed with high accuracy. Uncertainty pri-
marily stems from specific terms rather than the core matrices themselves. In this context, 
the following assumptions were made. 

║Δ║∞ =
def

��Ιn×nδΚ 0n×n
0n×n Ιn×nδΜ

��
∞

<1 (19) 

Thus, mp and kp were employed to adjust the proportion value, with nominal values 
denoted by the subscripts of zero. 

(It is urged that for matrix Αn×m, the norm is determined via ║A║∞ = max
1≤j≤m

� �aij�
n

j=1
) 

Taking these specifications into consideration, Equation (13) changes to 

𝑀𝑀𝑂𝑂 �I + 𝑚𝑚𝑝𝑝𝐼𝐼2𝑛𝑛𝑛𝑛2𝑛𝑛𝛿𝛿𝛭𝛭𝑞̈𝑞(𝑡𝑡)� + 𝐾𝐾𝐾𝐾 �𝐼𝐼 + 𝑘𝑘𝑝𝑝𝐼𝐼2𝑛𝑛𝑛𝑛2𝑛𝑛𝛿𝛿𝐾𝐾𝑞𝑞(𝑡𝑡)� + [𝐷𝐷 + 0.0005�𝐾𝐾𝐾𝐾𝑘𝑘𝑝𝑝𝐼𝐼2𝑥𝑥2𝛿𝛿𝐾𝐾 + 𝑀𝑀𝑂𝑂𝑚𝑚𝑝𝑝𝐼𝐼2𝑥𝑥2𝛿𝛿𝛭𝛭�𝑞̇𝑞(𝑡𝑡) +
𝑓𝑓𝑚𝑚(𝑡𝑡) + 𝑓𝑓𝑒𝑒(𝑡𝑡)  

⇒ 𝑀𝑀𝑂𝑂𝑞̈𝑞(𝑡𝑡) + 𝐷𝐷𝑂𝑂𝑞̇𝑞(𝑡𝑡) + 𝐾𝐾𝑂𝑂𝑞𝑞(𝑡𝑡) = −�𝑀𝑀𝑂𝑂𝑚𝑚𝑝𝑝𝐼𝐼2𝑛𝑛𝑛𝑛2𝑛𝑛𝛿𝛿𝛭𝛭𝑞̈𝑞(𝑡𝑡) + 0.0005�𝐾𝐾𝐾𝐾𝑘𝑘𝑝𝑝𝐼𝐼2𝑥𝑥2𝛿𝛿𝐾𝐾 + 𝑀𝑀𝑂𝑂𝑚𝑚𝑝𝑝𝐼𝐼2𝑥𝑥2𝛿𝛿𝛭𝛭�𝑞̇𝑞(𝑡𝑡) +
𝐾𝐾𝑂𝑂𝑘𝑘𝑝𝑝𝐼𝐼2𝑛𝑛𝑛𝑛2𝑛𝑛𝛿𝛿𝐾𝐾𝑞𝑞(𝑡𝑡)� + 𝑓𝑓𝑚𝑚(𝑡𝑡) + 𝑓𝑓𝑒𝑒(𝑡𝑡)  

⇒ 𝑀𝑀𝑂𝑂𝑞̈𝑞(𝑡𝑡) + 𝐷𝐷𝑂𝑂𝑞̇𝑞(𝑡𝑡) + 𝐾𝐾𝑂𝑂𝑞𝑞(𝑡𝑡) = 𝐷𝐷�𝑞𝑞𝑢𝑢(𝑡𝑡) + 𝑓𝑓𝑚𝑚(𝑡𝑡) + 𝑓𝑓𝑒𝑒(𝑡𝑡) 

(20) 

where 

𝑞𝑞𝑢𝑢(𝑡𝑡) = �
𝑞̈𝑞(𝑡𝑡)
𝑞̇𝑞(𝑡𝑡)
𝑞𝑞(𝑡𝑡)

�

𝐷𝐷� = −[𝑀𝑀0𝑚𝑚𝑝𝑝 𝐾𝐾0𝑘𝑘𝑝𝑝]⬚�𝐼𝐼2𝑛𝑛×2𝑛𝑛𝛿𝛿𝛭𝛭 02𝑛𝑛×2𝑛𝑛
02𝑛𝑛×2𝑛𝑛 𝐼𝐼2𝑛𝑛×2𝑛𝑛𝛿𝛿𝛫𝛫

�⬚ �𝐼𝐼2𝑛𝑛×2𝑛𝑛 0.0005𝐼𝐼2𝑛𝑛×2𝑛𝑛 02𝑛𝑛×2𝑛𝑛
02𝑛𝑛×2𝑛𝑛 0.0005𝐼𝐼2𝑛𝑛×2𝑛𝑛 𝐼𝐼2𝑛𝑛×2𝑛𝑛

� =

= 𝐺𝐺1 ⋅ Δ ⋅ 𝐺𝐺2

  

G1 = −[𝑀𝑀0𝑚𝑚𝑝𝑝 𝐾𝐾0𝑘𝑘𝑝𝑝],                 G2 = � 𝐼𝐼2𝑛𝑛×2𝑛𝑛 0.0005𝐼𝐼2𝑛𝑛×2𝑛𝑛 02𝑛𝑛×2𝑛𝑛
02𝑛𝑛×2𝑛𝑛 0.0005𝐼𝐼2𝑛𝑛×2𝑛𝑛 𝐼𝐼2𝑛𝑛×2𝑛𝑛

� (21) 

Expressing Equation (7) in state space form yields 

𝑥̇𝑥(𝑡𝑡) = � 02𝑛𝑛×2𝑛𝑛 𝐼𝐼2𝑛𝑛×2𝑛𝑛
−𝑀𝑀−1𝐾𝐾 −𝑀𝑀−1𝐷𝐷

� 𝑥𝑥(𝑡𝑡) + �
02𝑛𝑛×𝑛𝑛
𝑀𝑀−1𝑓𝑓𝑒𝑒∗

� 𝑢𝑢(𝑡𝑡) + �02𝑛𝑛×2𝑛𝑛
𝑀𝑀−1 � 𝑑𝑑(𝑡𝑡) + �

02𝑛𝑛×6𝑛𝑛
𝑀𝑀−1𝐺𝐺1 ⋅ Δ ⋅ 𝐺𝐺2

� 𝑞𝑞𝑢𝑢(𝑡𝑡) (22) 

= 𝛢𝛢𝛢𝛢(𝑡𝑡) + 𝛣𝛣𝛣𝛣(𝑡𝑡) + 𝐺𝐺𝐺𝐺(𝑡𝑡) +  𝐺𝐺𝑢𝑢𝐺𝐺2𝑞𝑞𝑢𝑢(𝑡𝑡) (23) 

Equations (11) and (12) represent the dynamic equations of motion for the structure, 
incorporating the mass and stiffness properties determined using the finite element 
method. These equations are formulated in the state-space domain, allowing us to derive 
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the dynamic response of the structure, that is, how it oscillates both with and without 
control mechanisms. 

By introducing parameters such as Kp and mp to alter the mass and stiffness regis-
ters, we can simulate changes in the initial conditions of the structure. This enabled us to 
model scenarios in which the structure was damaged or experienced shifts in its initial 
condition. In this methodology, we treat the uncertainty in the original matrices as an ad-
ditional input representing the modeling uncertainty. These equations incorporate the 
concept of integrating active and adaptable control strategies into smart structures, allow-
ing them to respond effectively to dynamic loads and changing environmental conditions. 
However, devising efficient control algorithms and systems capable of optimally reacting 
to external forces and structural states remains a significant challenge. Temperature 
changes change the displacements and in the hyperstatic carriers, the intensive state of the 
structure. However, in this application, while there is a production of electrical voltages, 
there is no temperature change. Temperature can also influence the frequency response of 
piezoelectric materials. Temperature changes can shift the resonance frequency of piezo-
electric devices, which is crucial for applications such as ultrasonic transducers. 

Engineers and researchers working with piezoelectric materials must consider these 
temperature effects to ensure the reliable and accurate performance of devices under dif-
ferent operating conditions. Techniques, such as temperature compensation and material 
selection based on the intended temperature range, are commonly employed to mitigate 
these effects. 

3. Results and Discussion 
3.1. Results 

The following are the simulations of smart construction. In all simulations, we con-
sidered wind charging, which was simulated using a sinusoidal charge. 

Certainly, here are the mathematical relationships commonly used to model wind 
forces in mechanical simulations [18–23,25,26]: 

The uniform wind load g is typically calculated using the following formula: 

d(t) = 0.5 × CP × ρ × V(t) (24) 

where 
CP is the pressure coefficient (dimensionless), CP = 1.5 
ρ is the air density (kg/m³), and 
where V(t) is wind speed (m/s). 
Dynamic wind loads consider the dynamic response of a structure to varying wind 

speed and direction over time. This is often modeled using differential equations that de-
scribe the motion of a structure under dynamic wind forces. 

In our simulation, V(t) = 10 sin(t), and in relation (23), 

d(t) = 0.5 × Cp × ρ × V(t) (25) 

These mathematical relationships are fundamental for accurately modeling wind 
forces in mechanical simulations and predicting the structural response under different 
wind conditions. 

Therefore, nominal values are represented by zero subscripts, and mp and kp are used 
to scale the value of the proportion. 

By introducing parameters such as Kp and mp to alter the mass and stiffness regis-
ters, we can simulate changes in the initial conditions of the structure. This enabled us to 
model scenarios in which the structure was damaged or experienced shifts in its initial 
condition. Using this methodology, we treated the uncertainty in the original matrices as 
a further parameter representing modeling uncertainty. 



Materials 2024, 17, 2357 11 of 20 
 

 

In Figure 8, we present a comprehensive analysis of the displacement behavior at the 
free end of our smart beam under varying conditions of parameters mp and kp, as repre-
sented by matrices A and B in Equation (23). 

 
Figure 8. (Upper diagram): Displacement (without control) of the free end of our smart beam in 
matrices A and B by changing mp and kp. (Middle diagram): Displacement without control (col-
ored foul lines) and with control (different blue lines) of the free end of our smart beam in matrices 
A and B (different mp, kp). (Lower diagram): Control voltages for different prices of our smart beam 
in matrices A and B (different mp and kp). 

The upper diagram in Figure 8 illustrates the displacement without control, showing 
the outcomes with changes in mp and kp. This depiction helps us to understand the inher-
ent behavior of a smart beam under different configurations. 

In the middle diagram, we delve deeper into the displacement scenario by con-
trasting the outcomes without control (depicted by colored foul lines) with those achieved 
with control (depicted by various blue lines). Notably, when H-infinity control is applied, 
the displacements approach nearly zero, indicating that the smart beam remains in equi-
librium according to the principles of H-infinity control theory. 

Finally, the lower diagram in Figure 8 provides insights into the control voltages re-
quired for different configurations of our smart beam, again considering variations in mp 
and kp, as per Equation (23). Notably, the maximum control voltages observed were 150 
Volts lower than the maximum voltages of the PZT patches, which were rated at 500 Volts. 

Figure 8 presents a detailed exploration of the displacement and control dynamics of 
our smart beam under varying parameters, shedding light on the efficacy of H-infinity 
control in maintaining equilibrium and minimizing control voltages within safe opera-
tional limits. 

Figure 9 provides a detailed analysis of the displacement behavior at the free end of 
our smart beam under varying conditions of parameters mp and kp, as represented by 
matrices M and K in Equation (23). 
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Figure 9. (Upper diagram): Displacement (without control) of the free end of our smart beam in 
matrices M and K by changing mp and kp. (Middle diagram): Displacement without control (col-
ored foul lines) and with control (different blue lines) of the free end of our smart beam in matrices 
M and K by changing mp and kp. (Lower diagram): Control voltages for different prices of our 
smart beam in matrices M and K (different values of mp and kp). 

In the upper diagram of Figure 9, we observe the displacement without control, il-
lustrating how changes in mp and kp affect the behavior of the smart beam. 

In the middle diagram, we delve deeper into the displacement scenario by comparing 
outcomes without control (depicted by colored foul lines) with those achieved with con-
trol (depicted by various blue lines). Notably, the inclusion of H-infinity control results in 
displacements approaching zero, indicating that the smart beam maintains equilibrium in 
accordance with H-infinity control principles. 

The lower diagram in Figure 9 offers insights into the control voltages necessary for 
different configurations of our smart beam, again considering variations in mp and kp, as 
per Equation (23). Notably, the maximum control voltages observed were 150 Volts lower 
than the maximum voltages of the PZT patches, which were rated at 500 Volts. 

Figure 9 provides a comprehensive view of the displacement and control dynamics 
of our smart beam under varying parameters, highlighting the effectiveness of H-infinity 
control in achieving equilibrium and minimizing the control voltages while ensuring op-
erational safety. In Figures 8 (Upper diagram) and 9 (Upper diagram) (in the first dia-
grams), the diagrams show the changes in the displacements for different values of the 
stiffness mass matrices A and B with the application of infinity intelligent control. They 
are zoomed-in images of the profiles shown in Figures 8 (Middle diagram) and 9 (Middle 
diagram). It should be noted that in Figures 8 and 9, we do not have phenomena such as 
temperature change, which will be examined in future work. 

Piezoelectric materials are fascinating because they exhibit a unique property: when 
mechanical stress is applied to them, they generate an electric charge; conversely, when 
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an electric field is applied, they undergo mechanical deformation. This phenomenon 
makes them highly useful in various applications such as sensors, actuators, and energy-
harvesting devices. 

The piezoelectric effect is affected by temperature in several ways. 
The piezoelectric effect is closely related to the elasticity of a material. Temperature 

changes can alter the elasticity of a material, thereby affecting its piezoelectric properties. 
Different piezoelectric materials have different temperature coefficients of elasticity, indi-
cating the extent to which their piezoelectric response changes with temperature. 

Temperature can also influence the frequency response of piezoelectric materials. 
Temperature changes can shift the resonance frequency of piezoelectric devices, which is 
crucial for applications such as ultrasonic transducers. 

Engineers and researchers working with piezoelectric materials must consider these 
temperature effects to ensure the reliable and accurate performance of devices under dif-
ferent operating conditions. Techniques, such as temperature compensation and material 
selection based on the intended temperature range are commonly employed to mitigate 
these effects. 

Subsequently, the results for the frequency field are presented. Figure 10 shows the 
system condition number of our system, which is the ratio of the minimum to the maxi-
mum eigenvalues of our smart system. The index of our system is high at low frequencies. 
The proposed system was controllable and observable. 

 
Figure 10. Condition number of our system. 

In the realm of frequency analysis, we delve into Figure 11, which illustrates the di-
agonal elements of weighting matrices. These matrices were the result of extensive testing 
aimed at ensuring the robustness and dependability of the currently employed controller. 
Notably, our controller boasts an order of 36, and the maximum eigenvalue γ = 0.074 sig-
nifies a critical characteristic of our control system. 
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Figure 11. Bode diagram of the smart system. 

Figure 12 shows the maximum singular value noise with respect to the error. The 
diagram provides a visual representation of the maximum singular values of the transfer 
functions associated with the closed-loop unstable system, focusing on the original values 
of particular interest. Upon closer examination, it is evident that noise has a limited influ-
ence on the error, particularly at frequencies exceeding 1000 Hz. This observation under-
scores the robustness of the system and its ability to maintain stability and accuracy even 
in the presence of external disturbances or noise at higher frequencies. 
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Figure 12. Max singular value noise to error. 

3.2. Discussion 
Piezoelectric materials play a crucial role in smart structures because they can convert 

electrical energy from mechanical energy, and vice versa. These materials possess unique 
features that allow for them to be used in a variety of smart structures, such as sensors, 
actuators, and energy harvesters [1–9]. Here are some key points about piezoelectric ma-
terials in smart structures: Piezoelectric materials can be used as sensors to detect mechan-
ical stress, strain, pressure, or vibrations in smart structures [10–16]. When mechanical 
stress is applied to a piezoelectric material, it generates an electrical charge proportional 
to the applied stress. This property makes piezoelectric sensors ideal for monitoring struc-
tural health, detecting structural damage, or measuring dynamic loads. In addition to 
smart structures, piezoelectric materials are often employed as actuators to induce me-
chanical deformations or vibrations in response to applied electrical signals [27–37]. When 
an electric field is applied to a piezoelectric material, it undergoes mechanical deformation 
that can be used to control the shape, position, or damping of the structure. Piezoelectric 
actuators are used in applications such as vibration control, shape morphing, and precise 
positioning [18–23,25–27]. In summary, piezoelectric materials play a vital role in enhanc-
ing the functionality, efficiency, and performance of smart structures by enabling sensing 
and actuation [28–33]. Their integration and optimization are key areas of research and 
development aimed at advancing the field of smart structures for various engineering ap-
plications. This study focuses on employing a robust control theory to minimize vibra-
tions in smart structures. Such structures integrate advanced sensing, actuation, and con-
trol systems to monitor and mitigate structural vibrations actively. Sensors track parame-
ters such as vibrations and displacements, whereas actuators (often piezoelectric) apply 
control forces based on sensor feedback. Robust control methods, such as H∞ control, µ-
synthesis, and model predictive control (MPC), are key to managing uncertainties and 
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dynamic variations effectively. Understanding a structure’s dynamics via techniques such 
as finite element modeling (FEM) and modal analysis is crucial for developing precise 
control strategies [38–41]. These goals include reducing resonance, damping unwanted 
vibrations, improving stability, and ensuring structural safety. 

In this study, we leveraged the capabilities of piezoelectric materials, both as sensors 
and actuators, to effectively dampen oscillations. This approach necessitates the use of a 
finite element formulation for structural analysis and a robust control theory for system 
stability and performance enhancement. Specifically, we employ the H-infinity (H∞) con-
trol theory, which is a robust control design methodology [18,27,41–45]. 

H∞ control is adept at ensuring system stability and performance even in the face of 
uncertainties and disturbances. When applied to piezoelectric actuators within smart 
structures, H∞ control aims to design controllers that exhibit robustness against variations 
in system dynamics, external disturbances, and modeling uncertainties. This approach is 
critical for meeting specified performance criteria and ensuring the reliable and effective 
operation of smart structures in real-world applications. 

The key steps and considerations for applying the H∞ control formulation to piezo-
electric actuators in smart structures are as follows [18–23,25–27,41–45]: 
1. System Modeling: The first step is to develop an accurate mathematical model of the 

smart structure dynamics, including the piezoelectric actuator, structural compo-
nents, sensors, and external disturbances. The model captured the electromechanical 
coupling of the piezoelectric material, structural dynamics, and feedback loops. 

2. Uncertainty Description: H∞ control addresses uncertainties in a system model. 
These uncertainties can arise from modeling errors, parameter variations, environ-
mental changes, or disturbances. It is essential to quantify these uncertainties and 
represent them within a control design framework. 

3. Performance Specifications: Performance criteria for a smart structure system are de-
fined. This includes stability requirements, tracking accuracy, disturbance rejection, 
bandwidth limitations, and robustness margins. These specifications guide the de-
sign of the H∞ controller to ensure that the system satisfies the desired performance 
objectives under various conditions. 

4. Controller Design: Utilize H∞ control synthesis techniques to design a robust con-
troller that minimizes the effects of uncertainties and disturbances on system perfor-
mance while satisfying performance specifications. H∞ controllers are typically de-
signed based on a structured singular value (µ) optimization framework that aims to 
minimize the worst-case sensitivity of the system. 

5. Controller Implementation: The designed H∞ controller is implemented on the smart 
structure system and integrated with the piezoelectric actuator control loop. This in-
volves tuning controller parameters, setting up feedback loops, and interfacing sen-
sors and actuators to achieve the desired control behavior. 
By applying the H∞ control formulation to piezoelectric actuators in smart structures, 

engineers can design robust and high-performance control systems that can effectively 
manage uncertainties, disturbances, and variations in the system dynamics. This approach 
enhances the reliability, stability, and functionality of smart structures in various applica-
tions such as vibration control, shape morphing, and structural health monitoring. 

Many researchers have been engaged in the application of modern methods to the 
development of new technologies and the application of sensors and actuators [49–52]. 
This is our future research, as well as the introduction of technical intelligence into our 
research. 

4. Conclusions 
This research utilized robust control theory to reduce vibrations in a smart structure. 

Smart structures integrate advanced sensing, actuation, and control systems to actively 
manage and mitigate structural vibrations by monitoring parameters, such as vibrations 
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and displacements. Actuators, particularly piezoelectric actuators, apply control forces 
based on sensor feedback to induce mechanical deformations. Robust control algorithms, 
such as H∞ control, µ-synthesis, and model predictive control (MPC), are crucial for ef-
fectively managing vibrations and handling uncertainties, disturbances, and dynamic var-
iations. Understanding the structural dynamics via techniques such as finite element mod-
eling (FEM), modal analysis, and system identification helps develop precise control strat-
egies. The objectives of smart structures for vibration reduction include minimizing reso-
nance, damping unwanted vibrations, improving stability, and ensuring structural integ-
rity and safety. 

Designing a smart structure for reducing vibrations with robust control involves a 
multidisciplinary approach that combines structural engineering, control theory, sensing 
technologies, and advanced algorithms to achieve enhanced performance, safety, and re-
liability in dynamic environments. 

In this study, we successfully achieved the complete suppression of oscillations in 
intelligent systems with H-infinity control. We consider modeling uncertainties and meas-
urement noise and then apply advanced control techniques. Our research results are 
shown in both time and frequency domains. The primary advantages of this study are as 
follows: 
1. Modeling Intelligent Structures for Control in Oscillation Suppression 

• We developed a mathematical model for intelligent structures that allows for the 
effective control of oscillations. 

2. Handling Uncertainties in Dynamic Loading. 
• Our approach addresses the uncertainties arising from dynamic loading condi-

tions and ensures robust control performance. 
3. Measurement Noise management 

• We accounted for measurement noise in the system, thereby enhancing the ac-
curacy and reliability of our control strategy. 

4. Selection of Optimal Weights for Suppression of Oscillation 
• Through appropriate weighting functions, we achieved the complete suppres-

sion of oscillations and optimized the control performance. 
5. Analysis of Time and Frequency Domains 

• Our results are presented and analyzed comprehensively in both the time and 
frequency domains, providing a thorough understanding of control perfor-
mance. 

6. Incorporation of Uncertainties in the Mathematical Model of the Structure 
• Uncertainties were introduced into the mathematical model of the structure, 

making our approach more robust and adaptable to real-world conditions. 
Overall, our study contributes to the advancement of control strategies in smart struc-

tures by effectively suppressing oscillations, considering uncertainties, and optimizing 
control performance through advanced techniques. Future investigations should focus on 
two primary avenues. First, the application of these control strategies to actual intelligent 
structures within an experimental framework is the focal point. Second, different control 
methodologies aimed at suppressing structural noise and vibration will be explored. In 
addition, the application of technical intelligence to suppress oscillations will be the sub-
ject of future research. 
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Nomenclature 
M: Mass matrix ψi(t): Displacement deflection  
K: Stiffness matrix x(t): The state vector of our system 
D: Viscous damping matrix y(t): Output vector of our system 
fe(t) 
fm(t) 

Piezoelectric force 
External mechanical force 

d31,: Piezoelectric constant 

n: Number of nodes in finite element for-
mulation 

Cp, Co 
Kf 

Piezoelectric constant 

u(t): 
Control voltages of actuators 
(control vector)  K(s): Hinfinity Controller of the system 

Fe: Matrix with piezoelectric constant E The young modulus of the beam 
wi(t): Rotation deflection P: Augment plant of the smart system  
μ: Singular value e(t): The error of the system 
d(t): Disturbances of the system n(t): Noise of the system 

A, B,  Matrices of our system D, G-K: 
D–K interaction in the frequency do-
main 

w Inputs of the smart systems  
(external disturbance, noise) 

z Outputs of the smart system 
(control vector, output vector) 

Wn: The noise weight for H-infinity control Wu: 
The control weight for Hinfinity con-
trol 

Wd: 
The disturbance weight for H-infinity 
control 

V(t) 
d(t) 

Wind speed 
External disturbance of the smart sys-
tem 

Δ: The uncertainty of the system δM t   
The uncertainty terms for the mass 
matrix 

δκ 
The uncertainty terms for the stiffness 
matrix 

kp, mp: Numerical constant from zero to one 

p Density of the beam W Width of the smart beam 
h  Thickness of the smart beam  hp, hs Width of pzt patches 
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