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Abstract: Challenging issues arise in the design of control strategies for piezoelectric smart structures.
Piezoelectric materials have been investigated for use in distributed parameter systems in order to
provide active control efficiently and affordably. In the active control of dynamic systems, distributed
sensors and actuators can be created using piezoelectric materials. The three fundamental issues that
structural control engineers must face when creating robust control laws are structural modeling
methodologies, uncertainty modeling, and robustness validation. These issues are reviewed in this
article. A smart structure with piezoelectric (PZT) materials is investigated for its active vibration
response under dynamic disturbance. Numerical modeling with finite elements is used to achieve
that. The vibration for different model values is presented considering the uncertainty of the modeling.
A vibration suppression was achieved with a robust controller and with a reduced order controller.
Results are presented for the frequency domain and the state space domain. This work cleary
demostrated the advantage of robust control in the vibration suppration of smart stuctures.

Keywords: smart structures; robust control; uncertainty; dynamical system

1. Introduction

A piezoelectric structure with a control strategy has the potential to adapt to both a
changing internal environment and a changing external environment, such as stresses or
form changes. It includes intelligent actuators that enable controlled modification of system
parameters and reactions. Piezoelectric materials (PZT), shape memory alloys, electrostric-
tive materials, magnetostrictive materials, and fiber optics are only a few examples of the
numerous types of actuators and sensors under consideration. We employ piezoelectric
material in our paper. In the active control of dynamic systems, piezoelectric materials can
be specially adapted to serve as distributed sensors and actuators. The study of intelligent
structures has drawn the attention of numerous scholars [1–6]. A smart structure is one
that keeps an eye on both its surroundings and itself [7,8].

Robust vibration control of piezoelectric-actuated smart structures has recently at-
tracted a lot of attention. Despite the existence of numerous sources of uncertainty, such
control laws are preferred for systems where guaranteed stability or performance are
required [9–11].

The later robust controller accounts for the dynamical system’s uncertainties as well
as the incompleteness of the measured data, which results in the design of smart structures
that can be used. To provide a thorough and unitary methodology for designing and
validating reliable Hinfinity (Hinf) controllers for active structures, the numerical simulation
demonstrates that sufficient vibration suppression can be achieved by using the suggested
general methods in a tutorial manner for the case of a piezoelectric smart structure [12–14].
The novelty of the work is that it calculates an Hinfinity controller with very good results
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in the frequency domain and the state space, even for different values of the mass and
stiffness matrix, considering the uncertainty of the modeling; additionally, good results
were acquired with a reduced order Hinfinity controller. No similar work achieves vibration
suppression if there are different values of the mass and the stiffness matrix.

2. Materials and Methods

The approximate discretized variation problem results from using the traditional
finite element method. By substituting discretized formulas into the initial variation
of kinetic energy and strain energy for a finite element, discrete differential equations
are generated [8,15]. The beam element equation of motion is defined in terms of the
nodal variable q as follows, integrating over spatial domains and applying Hamilton’s
principle [8,10]

M
..
q(t) + D

.
q(t) + Kq(t) = fm(t) + fe(t) (1)

where K is the global stiffness matrix, D is the viscous damping matrix, M is the global
mass matrix, fe is the global control force vector produced by electromechanical coupling
effects, and fm is the global external loading vector for a beam structure used in this work.

Transversal deflections wi and rotations ψi constitute the independent variable q(t), i.e.,

q(t) =


w1
ψ1
...

wn
ψn

 (2)

where in the analysis the number of finite elements used is the n index in the matrix. Vectors
w and f m are upward positive.

Permit state–space representation transformation of control (in the usual manner),

x(t) =
[

q(t)
.
q(t)

]
(3)

Furthermore, to express fe(t) as Bu(t) we write it as F∗e u where F∗e (of size 2n × n)
indicates the voltages on the actuators. The F∗e (of size 2n × n) matrix also denotes the
piezoelectric force for a unit mounted on its corresponding actuator. Lastly, the disturbance
vector is designed by the following equation d(t) = fm(t) [15]. Then,

.
x(t) =

[
02n×2n I2n×2n
−M−1K −M−1D

]
x(t) +

[
02n×n

M−1F∗e

]
u(t) +

[
02n×2n
M−1

]
d(t)

= Ax(t) + Bu(t) + Gd(t) = Ax(t) + [B G]

[
u(t)
d(t)

]
= Ax(t) + B̃ũ(t)

(4)

The output equation, as a function of the measured displacements, will help us to
strengthen this,

y(t) = [x1(t) x3(t) . . . xn − 1(t)]T = Cx(t) (5)

In the equation, the u parameter’s matrix size is n × 1 (or smaller), while the d param-
eter’s matrix size is 2n × 1. The units used are Newtons, radians, meters, and seconds.

In the next section, we will examine the behavior of a 32-element cantilever beam
containing pairs of elements. The beam’s dimensions are L × W × h. The sensors and
actuators have a width and thickness of bS and bA, individually. The electromechanical
properties of the beam of interest depicted in Figure 1a,b are listed in Table 1.
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Figure 1. (a) Piezoelectric smart beam; (b) Piezoelectric smart cantilever beam.

Table 1. Parameters of the smart beam.

Parameters Values

Beam length, L 0.8 m
Beam width, W 0.07 m

Beam thickness, h 0.0095 m
Beam density, ρ 1600 kg/m3

Young’s modulus of the beam, E 1.5 × 1011 N/m2

Piezoelectric constant, d31 254 × 10−12 m/V

2.1. Frequency Domain

In a transfer function matrix, the structured singular value is defined as,

µ(M) =


1

min
km

{
det(I−km M∆)=0, σ(∆) ≤ 1}

0, if no such structured exists
(6)

This matrix specifies the smallest structured ∆ and has σ(∆) as a function (sigma is the
structured singular value for the uncertainty modeling), and, as a result, the determinant
becomes zero, i.e., det(I − M∆) = 0: then µ(M) = 1/σ(∆). Equation (6) calculates the
singular value. The upper and lower limits are visually presented and they should be
less than one (1) for the specific Kp (arithmetic parameter for the stiffness matrix) and Km
(arithmetic parameter for the scaled mass matrix) values. Following this, it is desired that
the µ values are lower than 1, as shown in the results section. The principle followed was
the smaller, the better [15–17].

2.2. Design Objectives

Design goals can be divided into two groups:
Nominal performance

1. Small control effort.
2. Attenuation of disturbances with acceptable transient characteristics (overshoot, set-

tling time).
3. Strength of closed loop system (plant + controller).

Robust performance

4. The above criteria (1)–(3) should be satisfied even when noise exists in the
modeling procedure.
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2.3. System Specifications

To obtain the necessary system specifications, the system should be represented in the
(N, ∆) structure to achieve the aforementioned objectives. The conventional diagram is
depicted in Figure 2.
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The disturbance vector (mechanical force) d and noise vector n are the diagram’s two
inputs, and the control vector u and state vector x are the diagram’s two outputs. It is
expected in what follows that,

‖d
n
‖

2
≤ 1, ‖u

x
‖

2
≤ 1 (7)

If that is not the case, then the original signals can be modified using the right
frequency-dependent weights to give the altered signals this feature [9,13].

Rewrite Figure 2 similarly to Figure 3:
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with,

z =

[
u
x

]
, w =

[
d
n

]
(8)
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where z is the output (control vector u, and the state vector x) controllable variables as well
as exogenous inputs (mechanical disturbances vector and the noise) [12,14,18]. Given that
P is composed of two inputs and two outputs, it is typically partitioned as follows,[

z(s)
y(s)

]
=

[
Pzw(s) Pzu(s)
Pyw(s) Pyu(s)

][
w(s)
u(s)

]
oρ
= P(s)

[
w(s)
u(s)

]
(9)

Also,
u(s) = Ks(s)y(s) (10)

The transfer function for a closed loop is obtained by substituting (10) in (9) Nzw(s)
with Ks(s) the controller of our system,

Nzw(s) = Pzw(s) + Pzu(s)Ks(s)(I − Pyu(s)Ks(s))−1Pyw(s) (11)

To determine robustness prerequisites, an additional graph is needed, as shown in
Figure 5:
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where the N factor is defined by Equation (11) and the uncertainty parameter, which
is modeled in ∆, should satisfy the following criterion ||∆||∞ ≤ 1 (details later). Where

z = Fu(N, ∆)w = [N22 + N21∆(I − N11∆)−1N12]w = Fw (12)

We can state the following definitions based on this structure, shown in Table 2:

Table 2. Definitions.

Nominal stability (NS)⇔ N internally stable
Nominal performance (NP)⇔ ||N22(jω)||∞ < 1, ∀ω and NS

Robust stability (RS)⇔ F = Φu(N, ∆) stable ∀∆, ||∆||∞ < 1 and NS
Robust performance (RP)⇔ ||F||∞ < 1, ∀∆, ||∆||∞ < 1 and NS

The following conditions are demonstrated to be true for real or complex block-
diagonal perturbations ∆:

I. If M is internally stable, the system is presumably stable;
II. If the system performs about average;
III. If and only if, the system (M, ∆) is robustly stable,

sup
ω∈R

µ∆(N11(jω)) < 1 (13)

where the structured singular value of N is the parameter µ∆ in the criterion, for the
structured uncertainty set ∆. This condition is known as the generalized small gain theo-
rem [12–14].

IV. The system (N, ∆) exhibits robust performance if and only if,

sup
ω∈R

µ∆a(N(jω)) < 1 (14)
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where

∆a =

[
∆p 0
0 ∆

]
(15)

and ∆p is fully complex and has the same structure as ∆ and dimensions corresponding to
(w, z). Unfortunately, only bounds on µ can be estimated [19,20].

2.4. Controller Synthesis

All the aforementioned provide solutions to analytical problems and methods for
evaluating and contrasting controller performance. A controller that provides a specific
performance in terms of the structured singular value may be calculated [12,13].

This is the so-called (D, G-K) iteration [9], in which finding a µ-optimal controller Ks
such that µ(Φu(F(jω)), Ks(jω)) ≤ β, ∀ω, is transformed into the problem of finding transfer
function matrices D(ω) ε∀∆ and G(ω) ε Γ, such that,

sup
ω

σ

[(
D(ω)(Fu(F(jω), Ks(jω))D−1(ω)

γ
− jG(ω)

)(
I + G2(ω)

)− 1
2
]
≤ 1, ∀ω (16)

Unfortunately, even discovering local maxima is not guaranteed by this approach;
however, a technique known as D-K iteration is available for complex perturbations (also
implemented in MATLAB) [12,13,16]. It combines Hinf synthesis and µ-analysis and often
produces positive results. An upper limit on µ in terms of the scaled single value serves as
the starting point,

µ(N) ≤ min
D∈D

σ(DND−1) (17)

It is aimed to determine the controller, which lowers the peak over frequency of its
upper limit,

min
K

(
min
D∈∆
‖ DN(Ks)D−1 ‖∞

)
(18)

by alternating between minimizing ‖DN(Ks)D−1‖∞ with respect to either Ks or D (while
maintaining the other constant) [9].

3. Results and Discussion

Through the relation, the function fm(t) was produced from the wind velocity data.

fm(t) =
1
2

ρCuV2(t) (19)

where V = velocity, ρ = density, and Cu = 1.2.
On one side of the structure, every node is subjected to periodic sinusoidal loading

pressure that simulates a severe wind.
The boundaries on the values in the frequency domain are displayed in Figure 6. This

results in a deviation of the mass and stiffness matrices M, and K of about 90% from their
nominal values.

As can be seen, the system is still stable and performs robustly, because, for all relevant
frequencies, the upper bounds of both values remain below 1.

Additionally, we regulate the structure in the state space domain by varying the nomi-
nal values of the matrices A and B, stiffness matrix K, and mass matrix M(rel.4). Account
factors are considered, such as nonlinearities and system dynamics that the modeling
procedure neglects, an insufficient understanding of disturbances, the disturbances caused
by the environment’s effect, and the decreased accuracy of system sensor data.
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The results, as shown in Figure 7, are excellent: oscillations were suppressed even for
varying prices of the system’s primary matrices A and B; additionally, the oscillations were
reduced by differentiating the costs of the mass and stiffness matrices (12) and preserving
the piezoelectric components’ voltages within their endurance ranges. Figures 7 and 8
show the displacement of the free end of the smart structure when applying Hinfinity control
(close loop with PZTvoltages)in the schematic with the blue line. The smart piezoelectric
structure almost has no vibrations, and it maintains equilibrium even when the key system
matrices (A, B, M, and K) have different prices. In Figure 7 with green, red, light blue and
petrol line we can see the displacement of the free end of the beam with different prices of
matrices A and B of our system for the open loop that means without PZT voltages. Also
in Figure 8 with green, red, light blue and petrol line we can see the displacement of the
free end of the beam with different prices of matrices M and K of our system for the open
loop that means without PZT voltages. Figures 7 and 8 in the last graph show the changes
when the PZT material properties change. The smart piezoelectric structure almost has
no vibrations, and it maintains equilibrium even when the key system matrices (A, B, M,
and K) have different prices. The initial parameters are the mass, the damping, and the
stiffness matrix. In Figures 7 and 8 these parameters change for the open and the closed
loop—this means without PZT material and with PZT material. This work focuses on a
specific PZT material with its properties shown in Table 1. Figure 7 (last graph) shows the
changes when the PZT material properties change.

The discovered Hinfinity controller is 24 in order. Numerous scientists have proposed
algorithms for order reduction as a result of the fact that the order of the controller, which
is equal to the order of the system, is substantially higher than the order of conventional
controllers such as PI and LQR. The following process will use the most widely used
of these algorithms, known as Hifoo [21], which has been implemented in the Matlab
environment. The main issue is to calculate a reduced-order n < 24 controller that preserves
the performance of the Hinfinity criterion and the behavior of a full-order controller of the
given system. As a mechanical input to this controller, 10 KN is taken at the free end of the
structure. In Figure 9 we can see the beam-free end displacement with and without control,
using Hifoo recovery time 0.05 sec (0.03 with Hinfinity), the steady-state error of the order
of 10−5 m (10−6 with Hinfinity) maximum elevation 2.1 × 10−4 (0.3 × 10−4 with Hinfinity)
and vibration suppression at 90% (98% with Hinfinity). In Figure 10, we can see the voltages
within the piezoelectric limits of 30 volts.
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The frequency response of the weighting function and matching model is shown in
Figure 11. The graph of the function remains below unity so the controller archives robust
performance for the given data.
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4. Conclusions

The ability of piezoelectric materials to directly transform mechanical energy into
electrical energy and vice versa has made them the most desirable functional materials
for sensors and actuators in smart constructions. They exhibit outstanding frequency
responsiveness and electromechanical coupling properties. In this study, we include active
vibration suppression and robust control in the dynamics of a clever piezoelectric system.
By using the established vibration control methods on a clever piezoelectric construction,
numerical evaluations are performed and analyzed in order to confirm the efficiency of
the method. We include modeling uncertainties by accounting for the nonlinearity of
the system that was not taken into account in the model, our incomplete understanding
of the model’s values and parameters, and their physiological fluctuations during the
duration of the structures’ operation. An Hinfinity-based controller is designed to suppress
the vibration of the smart piezoelectric structure under dynamical loading. The robustness
of the Hinfinity controller to parametric uncertainty in vibration suppuration problems is
shown. The benefit of robust control and active vibration suppression in the dynamics of
smart structures is amply illustrated by this work. Hinfinity control has certain advantages
for the analysis of robust control systems. Unfortunately, relatively complicated modeling
and resulting controllers lead to restricted practical applications. These drawbacks will
be gradually eliminated due to the availability of cheaper and more powerful electronic
components for control implementation. Future research will be focused on experimental
verification in this direction.
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