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INTRODUCTION  

This paper describes an integrated approach to 

design and implement robust controllers for 

intelligent structures. An intelligent structure is 

the structure that monitors itself and its environment. 

In our paper we use a smart piezoelectric structure 

[1], [2]. An accurate model of a homogeneous 

beam with piezoelectric actuators and sensors is 

derived by means of the finite element analysis. 

A robust controller with is designed based on the 

augmented plant composed of the nominal model 

and its accompanied uncertainty by solving a 

convex optimization problem.  The mathematical 

model derived using robust control is compared 

with models obtained by more conventional and 

well-known methods [3], [4]. Using this model, 

an Hinfinity controller is designed for vibration 

suppression purposes.  An optimal controller is 

designed using nonconvex and nonsmooth 

optimization [5], [6]. Robust control theory is 

used to synthesize controllers achieving stabilization 

with guaranteed performance for smart structures. 

To use Hinfinity methods, a control designer expresses 

the control problem as a mathematical optimization 

problem and then finds the controller that solves 

this optimization [7], [8]. This article shows some 

steps that should be followed in the design of a 

smart structure. In our paper a cantilever slender 

beam with rectangular cross-sections is considered. 

Thirty-six pairs of piezoelectric patches are embedded  

symmetrically at the top and the bottom surfaces of 

the beam, as a model structure. It is obvious that 

every structure modelled by using finite elements 

can be used in a similar way. The beam is from 

graphite- epoxy T300 − 976 and the piezoelectric 

patches are PZT G1195N. The top patches act 

like sensors and the bottom like actuators [9], 

[10]. The resulting composite beam is modelled 

by means of the classical laminated technical 

theory of bending. Let us assume that the 

mechanical properties of both the piezoelectric 

material and the host beam are independent in 

time. The thermal effects are considered to be 

negligible as well [5], [7], [11]. 

Table1. Parameters of The Composite Beam 

Parameters Values 

Beam length, L 0.8m 

Beam width, W 0.08m 

Beam thickness, h 0.0093m 

Beam density, ρ 1800kg/m3 

Young s modulus of the beam, E 1.5 Χ 1011 N/m2 

Piezoelectric constant, d31 254 Χ 10−12 m/V 

Electric constant, ξ33 11.5 Χ 10−3 V m/N 

Young’s modulus of the piezo-

electric element 
1.5 Χ 1011 N/m2 

Width of the piezoelectric element bS= ba= 0.07m 

Thickness of the piezoelectric 

element 
hS= ha= 0.0002m 

The beam has length L, width W and thickness h. 

The sensors and the actuators have width bS and 
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bA and thickness hS and hA, respectively. The 

electromechanical parameters of the beam of 

interest are given in the Table I, [12], [13] 

In order to derive the basic equations for 

piezoelectric sensors and actuators [14], [15], 

[16], [17], [18]. 

we assume that: 

• The piezoelectric sensors actuators (S/A) are 

bonded perfectly on the host beam; 

• The piezoelectric layers are much thinner then 

the host beam; 

• The piezoelectric material is homogeneous, 

transversely isotropic and linearly elastic; 

RESEARCH ON INTELLIGENT STRUCTURES 

The following paragraphs gives the research 

work done on the intelligent structures so far. 

Culshaw discussed the concept of smart 

structure, its benefits and applications [8]. Rao 

and Sunar explained the use of piezo materials as 

sensors and actuators in sensing vibrations in 

their survey paper [19]. Hubbard and Baily have 

studied the application of piezoelectric materials 

as sensor / actuator for flexible structures [14]. 

Hanagud developed a Finite Element Model 

(FEM) for a beam with many distributed 

piezoceramic sensors / actuators [20]. 

Packard presented a new finite element (FE) 

modeling technique for flexible beams [21]. 

Continuous time and discrete time algorithms 

were proposed to control a thin piezoelectric 

structure by Bona [22]. Schiehlen and Schonerstedt 

reported the optimal control designs for the first 

few vibration modes of a cantilever beam using 

piezoelectric sensors / actuators [18]. Choi have 

shown a design of position tracking sliding mode 

control for a smart structure [7]. Distributed 

controllers for flexible structures can be seen in 

Forouza Pourki [10]. 

A FEM approach was used by Benjeddou to 

model a sandwich beam with shear and extension 

piezoelectric elements [1]. The finite element 

model employed the displacement field of Zhang 

and Sun [23]. It was shown that the finite element 

results agree quite well with the analytical 

results. Raja extended the finite element model of 

Benjeddou’s research team to include a vibration 

control scheme [1], [24]. A recent review of 

single and multilayer models suitable for smart 

structures has been published by Tairidis [25]. 

THEORETICAL FORMULATION 

The dynamical description of the system is given 

in the finite element discretized structure 

framework by, 

( ) ( ) ( ) ( ) ( )t + t + t = t + tm eMq Dq Kq f f
                (1) 

where M is the generalized mass matrix, D the 

viscous damping matrix, K the generalised stiffness 

matrix, fm the external loading vector and fe the 

generalised control force vector produced by 

electromechanical coupling effects.  The indepen-

dent variable q(t) is composed of transversal 

deflections wi and rotations ψi, i.e. [12], [13], [26]. 

Furthermore to express fe(t) as Bu(t) we write it as 
*

ef u , where 
*

ef is the piezoelectric force for a 

unit applied on the corresponding actuator, and u 

represents the voltages on the actuators.  Lastly 

d(t)=fm(t) is the disturbance vector. 

CONTROL DESIGN 

We solve a regulator problem for the smart beam 

with viscous layer. The objective in this section 

is to determine the optimal vector of active 

control forces u(t) subjected to performance 

criteria and satisfying the dynamical equations of 

the system, such that to reduce in an optimal way 

the external excitations. We consider the steady 

state (infinite time) case, i.e. the optimization 

horizon is allowed to extend to infinity. We seek 

a linear state feedback [20], [27], [28].  

 u(t) =-K x(t), with constant gain K. 

The control problem is to keep the beam in 

equilibrium which means zero displacements and 

rotations in the face of external disturbances, 

noise and model inaccuracies, using the available 

measurements (displacement) and controls [13], 

[21], [29]. 

H INFINITY CONTROL 

To relate the structures used in classical and Hinfinity 

(H∞) control, let’s look at Fig. 1 Control bloc 

diagram, in the frequency domain [30], [31], [32]. 

 

Fig1. Control bloc diagram in the frequency 

domain1. 
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In this diagram are included all inputs and 

outputs of interest, along with their respective 

weighs W, where Wd, Wu,, Wn, Wy are the 

weighs for the disturbances, control, noise, 

outputs respectively. The exogenous inputs are 

the noise n and the disturbances d. K(s) is the 

controller, B, G, x, y, C define the state form of 

the system, x is the input y is the output and F(s) 

is the transfer function of our system [16], [20], 

[33]. 

To find the necessary transfer functions, one first 

considers the description of the controlled system:  

𝑦𝐹𝑤 = 𝑊𝑦𝐽𝑥 =  𝑊𝑦𝐽𝐹𝑣 = 𝑊𝑦𝐽𝐹(𝐺𝑊𝑑𝑑 +

𝐵𝑢𝐾) = 𝑊𝑦𝐽𝐹𝐺𝑊𝑑𝑑 + 𝑊𝑦𝐽𝐹𝐵𝑢𝐾   

𝑢𝑤 = 𝑊𝑢𝑢𝐾                                                 (2) 

𝑦𝑛 = 𝐶𝑥 + 𝑊𝑛𝑛 = 𝐶𝐹𝑣 + 𝑊𝑛𝑛                              

                           = 𝐶𝐹(𝐺𝑊𝑑𝑑 + 𝐵𝑢𝐾) + 𝑊𝑛𝑛 

                           = 𝐶𝐹𝐺𝑊𝑑𝑑 + 𝐶𝐹𝐵𝑢𝐾 + 𝑊𝑛𝑛   

Combining all these gives, 

0 0

0

w u

Fw y d y

n d n K

u W d

y W JFGW W JFB n

y CFGW W CFB u

     
     

=     
     
     

              (3) 

Note that the plant transfer function matrix, F(s), 

is reduced from the suitably reformulated plant 

equations, 

 
( ) ( ) ( )x t Ax t Iv t= +

 

 𝑦(𝑡) = 𝐼𝑥(𝑡) 

where v(t)=Gd+Buk. Hence, 

( ) ( )
1

F s sI A
−

= −                                                  (4) 

The equivalent two-port diagram in the state 

space form is Fig. 2 for the close loop, and with 

more details in Fig. 3 [16], [30], 

 

Κ 

P 

z w 

u 

y 

 

Fig2. Two-port diagram. 

with, 

, , ,
w

n K

Fw

u d
z w y y u u

y n

   
= = = =   

  
                   (5) 

where z are the output variables to be controlled, 

and w the exogenous inputs [17], [26], [29] 

Given that P has two inputs and two outputs it is, 

as usual, naturally partitioned as, 

ορ( ) ( )( ) ( ) ( )
( )

( ) ( )( ) ( ) ( )

zw zu

yw yu

P s P sz s w s w s
P s

P s P sy s u s u s

      
= =      

      
      (6) 

Also, 

.K(s)y(s)=u(s)                                                  (7) 

Using (3) the transfer function for P is 

0 0

( ) 0

u

y d y

d n

W

P s W JFGW W JFB

CFGW W CFB

 
 

=  
 
 

                      (8) 

while the closed loop transfer function Mzw(s) is, 

( ) 1( ) ( ) ( )( ( ) ( )) ( )zw zw zu yu ywM s P s P s K s I P s K s P s−= + −     

(9) 

or, 

( ),zw lz M w F P K w= =                                       (10) 

Equation (9) is the well-known lower LFT for 

Mzw. 

To express P in state space form, the natural 

partitioning, 

1 2

1 11 12

2 21 22

( ) ( )
( )

( ) ( )

zw zu

yw yu

A B B
P s P s

P s C D D
P s P s

C D D

 
  

= =   
   

         (11) 

is used (where the packed form has been used), 

while the corresponding form for the controller Κ 

is [9], [10], [33], 

( )
K K

K K

A B
K s

C D

 
=  
  

 

Equation (11) defines the equations at the state 

space form, 

 1 2

1 11 12

2 21 22

( )
( ) ( )

( )

( ) ( )
( )

( ) ( )

w t
x t Ax t B B

u t

C D Dz t w t
x t

C D Dy t u t

 
= +  

 

      
= +      

      

 

and, 

x K(t)=AKxK(t)+BKy(t) 

u(t)=CKxK(t)+DKy(t) 

To find the matrices involved, we break the 

feedback loop and use the relevant equations: 
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Fig3. Details of H∞ structure 

Therefore the equations relating the inputs, 

outputs, states and input/output to the controller 

are [31], [26]: 

( ) ,F F w F Fx Ax Gd Bu y x= + + =  

,u u u u w u u ux A x B u u C x D u= + = +
 

,yF yF yF yF F Fw yF yF yF Fx A x B Jy y C x D y= + = +
       

(12)
 

,n n n n w n n nx A x B n n C x D n= + = +
 

,d d d w d d dx A x Gd d C x D d= + = +
 

n F wy Cy n= +  

,

F

u

Fw n

n

d

x

x

x y y y

x

x

 
 
 
 = =
 
 
 
 

,
d

w
n

 
=  
 

, ,
w

K

Fw

u
z u u

y

 
= = 
   

From (12), we use dw, nw και yFw and take our 

initial state space equation of our system [13], [26] 

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

G d d

u u

F yF

n n

d d

A GC GD B

A B

x BC A x w u

A B

A B

     
     
     
     = + +
     
     
     

    

     (13) 

0 0 0 0
0

0 0 0 0

u u

yF F yF

C D
z x w u

D C C

   
= + +   

  
         (14) 

   0 0 0 0 0F n ny C C x D w u= + +          (15) 

Therefore the matrices are: 

1 1 2

0 0 0 0

0 0 0 0 0 0

0 0 0 , 0 0 , 0

0 0 0 0 0 0

0 0 0 0 0 0

F d d

u u

F yF

n n

d d

A GC GD B

A B

A BC A B B

A B

A B

     
     
     
     = = =
     
     
     

    

  

1 11 12

0 0 0 0
, 0,

0 0 0 0

u u

yF F yF

C D
C D D

D C C

   
= = =   

  
     

                                                                       (16) 

   2 21 220 0 0 , 0 , 0F n nC C C D D D= = =

Robust control allows dealing with uncertainty 

affecting a dynamical system and its environment. In 

this section, we assume that we have a 

mathematical model of the dynamical system 

with uncertainty. We restrict ourselves to linear 

systems: if the dynamical system we want to 

control has some nonlinear components (e.g., 

input saturation), they must be embedded in the 

uncertainty model. Similarly, we assume that the 

control system is relatively small scale (low 

number of states): higher-order dynamics are 

embedded in the uncertainty model [11], [20], [27]. 

NONCONVEX NONSMOOTH ROBUST OPTI-

MIZATION 

The main difficulties faced when seeking a 

feedback matrix K(s)  are as follows: 

Nonconvexity 

The stability conditions are typically nonconvex 

in K(s);  

Non Differentiability 

The performance criterion to be optimized is 

typically a nondifferentiable function of K(s);  

Robustness 

Stability and performance should be ensured for 

every possible instance of the uncertainty.  

So if we are to formulate the robust control 

problem as an optimization problem, we should 

be ready to develop and use techniques from 

nonconvex, nondifferentiable, robust optimization 

[29], [32]. 

INPUTS 

A typical wind load Fig. 3 acting on the side of 

the structure. The wind load is a real life wind 

speed measurements in relevance with time that 

took place in Estavromenos of Heraklion Crete. 

We transform the wind speed in wind pressure 

function fm(t) has been obtained from the wind 

velocity record, through the relation 

21
( ) ( )

2
m uf t C V t=

                                 (17) 

where V=velocity, ρ=density and Cu=1.5. 
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Fig4. Wind load 

Moreover, in all simulations, random noise has 

been introduced to measurements at system 

output locations within a probability interval of 

±1%.  Due to small displacements of system 

nodal points, noise amplitude is taken to be small, 

of the order of 5 × 10–5. On the other hand, the 

signal is introduced at each node of the beam by 

a different percentage, that percentage being 

lower at the first node due to the fact that the 

beam end point is clamped [23], [26], [34]. 

RESULTS 

Furthermore, we control the structure with 

variations of the nominal values of the mass 

matrix M, stiffness matrix K. In Figs. 4a-b 

complete vibration reduction is achieved even for 

variations of beam mass and stiffness up to 80%. 

The piezoelectric force is in their endurance 

limits, less 500 Volt 9 (Fig. 4c).  In  Figs. 5a-b 

complete vibration reduction is achieved even for 

variations of matrices  A and B up to 90%. 

Moreover, controller size contains so as to lower 

energy consumption and maintain piezoelectric 

materials within operation limits (500 volt), Fig. 5c. 

 
Fig4a. Displacement of the free end of the beam with 

Hinfinity  control. 

Fig4b. Displacement of the free end of the beam for 

different prices of the Mass and the stiffness matrices 

with and without control. 

Fig4c. Control voltages for the free end of the beam 

with Hinfinity  control. 

 

Fig5a. Displacement of the free end of the beam with 

Hinfinity  control 

Fig5b. Displacement of the free end of the beam for 

different prices of the matrices A and B of the system 

with and without control 

Fig5c. Control voltages for the free end of the beam 

with Hinfinity  control. 

NONSMOOTH AND NONCONVEX 

OPTIMIZATION 

The H∞ controller found is of order 36. The fact 

that controller order, which is equal to the order 

of the system, is relatively higher than the order 

of classical controllers such as PI and LQR has 

led a number of researchers to develop order 

reduction algorithms. The most widely used such 

algorithm, known as HIFOO, has been implemented 

in a Matlab environment, and is the one used in the 

following procedure [3], [4], [5], [6]. 

The general problem is to compute a controller of 

reduced rank/order n <36 while retaining the 

performance of the H∞ criterion as well as the 

behavior of a full order controller for the given 

system [2], [3], [4], [5]. 

1 2

1 11 12

2 21 22

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x t Ax t B w t B u t

z t C x t D w t D u t

y t C x t D w t D u t

= + +

= + +

= + +                          (18) 
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The state space equations for the controller K are 

( ) ( ) ( )

( ) ( ) ( )

x

x

K KK K

KK K

x t A t B y t

u t C t D y t

= +

= +
                                     (19) 

Let α(X) be the spectral abscissa of a matrix X, 

that is the maximum real part of its eigenvalues. 

Then, we require not only that α(ACL) < 0, where 

ACL is the closed-loop system matrix, but that 

α(Ak) < 0 as well. The feasible set of Ak, that is 

the set of stable matrices, is not a convex set and 

has a boundary that is not smooth [3], [4], [5], 

[16]. 

The HIFOO procedure has two phases: stability 

and performance optimization [3], [4], [6], [29], 

[32]. 

In the stability phase, HIFOO attempts to 

minimize 

max( ( , ( )))CL CLA A                              (20) 

where ε is a positive parameter that will be 

described shortly, until a controller is found for 

which this quantity is negative, that is the 

controller is stable and makes the closed-loop 

system stable. In case it is unable to find such a 

controller, HIFOO terminates unsuccessfully. 

In the performance optimization phase, HIFOO 

searches for a local minimizer of 

f(K)    = {
∞,                                      if max (a(Aa, a(Ak))) ≥ 0

max(‖Tzw‖∞, ∈ ‖K‖∞),                     else                       
 

                                                           (21) 

where                          

1

2
0

( )sup k k K K

Rs

C sI A B D−



=

 = − +

   

The introduction of ε is motivated by the fact that 

the main design objective is to attain closed-loop 

system stability and to minimize ||Tzw||∞., by 

demonstrating that ε should be relatively small; 

the term ε||K||∞, however, prevents the controller 

H∞ norm from becoming too large, in which case 

the stability constraint by itself would not exist. 

Given that it is preceded by the stability phase, 

the performance optimization phase is initialized 

with a finite value of f(K). Consequently, when it 

reaches a value of K for which  

f(K)=∞, that value is rejected, since an objective 

reduction is sought at each iteration  [5], [16], [32]. 

As mentioned before, the HIFOO controller is 

implemented in Matlab by way of appropriate 

routines. It is called in the following manner: 

 

where plant is the system description in the form 

of Eq. (18), and n = 2 is controller order. 

The resulting controller is described in state 

space in similar manner as H∞, i.e. 

( ) ( ) ( )

( ) ( ) ( )

x

x

K KK K

KK K

x t A t B y t

u t C t D y t

= +

= +
                         (22) 

The controller state space equation is given by 

(22), where controller matrices are equal to 

728.1 5034

207.5 1408

212.8 811.6 1716 2810

164.9 637.2 1348 2207

1557 916.7

1013 592.3

517 297.9

144.3 82.59

36.1 136.6 287.1 468.3

23.5 87.69 186.5 303

12.12 44.12 93.39 154.3

4.204 12.

K

K

K

K

A

B

C

D

− 
=  

− 

 
=  

− − − − 

− 
 

−
 =
 −
 

− 

=

53 26.92 43.51

 
 
 
 
 
              (23) 

For the purpose of comparison of HIFOO 

controller performance to that of H∞, the beam 

free end response is examined, for the mechanical 

input [29], [32]. 

For the input, in Fig. 6 the beam free end 

response is shown, initially with and then without 

the HIFOO controller, while Fig. 7 presents 

produced actuator voltage using the HIFOO 

controller. 

 

Fig6. Beam free end displacement, with and without 

HIFOO control 

Using the HIFOO controller for an actual wind 

loading, beam position control is effected with 

node displacements of order of 10–5, with lower 

produced voltage. We therefore maintain H∞ 
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criterion performance with a lower order controller. 

The maximum produced voltage for the HIFOO 

controller is 7 V; the respective value is 45 V for 

the H∞ controller. In other words, beam 

adjustment to its equilibrium position is achieved 

with a lower order controller that requires lower 

voltage, Fig.7 

 

Fig7. Stress at beam nodal points, using HIFOO. 

CONCLUSIONS 

This paper describes an integrated approach to 

design and implement robust controllers for smart 

structures. The mathematical model derived using 

robust control is compared with models obtained 

by more conventional and well-known methods. 

Using this model, a Hinfinity controller is designed 

for vibration suppression purposes. This robust 

controller accommodates the limited control 

effort produced by actuators. Hinfinity techniques 

have the advantage over classical control 

techniques in that they are readily applicable to 

problems involving multivariate systems with 

cross-coupling between channels. Simultaneously 

optimizing robust performance and robust 

stabilization is difficult. One method that comes 

close to achieving this is Hinfinity, which allows 

the control designer to apply classical loop-

shaping concepts to the multivariable frequency 

response to get good robust performance, and 

then optimizes the response near the system 

bandwidth to achieve good robust stabilization.  

The Bode's integrals are used to approximate the 

derivatives of amplitude and phase of the plant 

model with respect to the frequency. Simulation 

examples illustrate the effectiveness and the 

simplicity of the proposed method to design   the 

robust controllers. An optimal controller is the 

trained using nonconvex and nonsmooth 

optimization to mimic the previous controller. 

These designs are all then realized as digital 

controllers and their closed-loop performances 

have been compared. In particular, the robustness 

properties of the controller have been verified for 

variations in the mass of the test article and the 

sampling time of the controller. 
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