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Sliding window estimation is very useful in certain areas of automatic control. In this paper recursive sliding window versions of 
popular estimation algorithms are presented which greatly reduce computational load and response time , thus making them 
suitable for on-line applications. An illustrative example demonstrates the usefulness of the algorithms. 

1. Introduction 

Iterative parameter estimation methods form the basis for the solution of many problems in control 
practice. State estimation in noisy environments and fault detection are two such areas . In the linear 
world the least squares estimator (LSE) with its many variations / interpretations is widely used. Its 
simplest scalar output non-recursive form for n consecutive samples is , 

o = [uTurluTy , (1a) 

where 

y(k) = uT(k)O + e(k), k = 1, ... , n (1b) 

is the model of the process with y(k) being the scalar observed variable / regressand / output , u(k) the 
(m x 1) explanatory variables / regressors / inputs , () the (m x 1) unknown parameter vector and e(k) the 
error due to measurement noise and modelling inaccuracies. 

Equation (1a) uses all available information , lumped in U andy, to produce a one-shot estimate of 0. 
One form for a recursive version of (1) is given by 

P(k) = P(k- 1)-P(k- 1)u(k)u T(k)P(k - 1) / (1 + u T (k)P(k- 1)u(k)) , 

O(k) = O(k - 1) + P(k)u(k)[y(k) - uT(k)O(k - 1)) . 

(2a) 

(2b) 

Starting points for equations (2a) , (2b) are an a priori estimate 0(0) of() and a P(O) reflecting the 
confidence in this initial estimate . It is common practice to take , 

0(0) = 0 , P(O) =pi ; p ~ 0 . 
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Equations (2a), (2b) may be expressed in other forms, each one exemplifying a particular aspect of 
the algorithm. For example, if (2b) is rewritten as 

iJ(k) =[I - P(k)u(k)uT(k)]iJ(k -1) + P(k)u(k)y(k), 

the nature of the estimate updating is pointed out. 
The vector output versions of (1a), (1b), (2a), (2b) are given in Norton [4], as 

x(k) = [i1fT(k)i1f(k)r 1i1fT(k)c&(k), 

CfY(k) = ile(k)x + 'V(k), 

P(k) = P(k - 1) - P(k -1)HT(k)[I + H(k)P(k- 1)HT(k)r 1H(k)P(k -1), 

x(k) = i(k- 1) + P(k)HT(k)[y(k) - H(k)i(k - 1)], 

where 

and 

r v(1)] 

'V(k)=lv~~) ' 
1y(1)] 1H(1)] 

CfY(k) = ly~~) ' ile(k) = l~(~) ' 

(3a) 

(3b) 

(4a) 

(4b) 

is the covariance of x(k). Initialisation of (4a), (4b) is performed analogously to initialisation for (2a) , 
(2b) . 

The recursive expressions (2a), (2b), (4a), (4b) utilize the whole set of available information, 
providing optimum estimates. There are cases however, where this is either undesirable or ineffective. 
These are: 

(1) Situations where it is desirable to track time-varying parameters. In such cases the model is 
described as 

y(k) = uT(k)O(k) + e(k), k = 1, ... , n. (5) 

The inability of the preceding algorithms to track time variation of parameters stems from the fact 
that the estimate error covariance matrix P(k) settles to a small value (meaning great confidence to 
estimates) and therefore new information is not taken into account quickly. There are a number of 
different approaches to overcome this problem: 

(1a) A weighting matrix W (also called forgetting factor) can be used, resulting in the weighted least 
squares estimate (WLSE), 

Its recursive counterpart for diagonal W is 

P(k) = P(k - 1) - P(k -1)u(k)uT(k)P(k- 1)(w(k) - 1 + uT(k)P(k + 1)u(k)]- 1
, 

iJ(k) = iJ(k - 1) + P(k)u(k)w(k)[y(k)- uT(k)iJ(k - 1)], 

(6) 

(6a) 

(6b) 

where w(k) is the corresponding diagonal element of W, usually increasing with time. In this way the 
estimator gain (through the error covariance) is prohibited from getting too small, and thus enabling the 
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tracking of the parameter variations. Typical values for (1/w(k)) are 0.95, 0.99. Alternatively, in a 
Markovian context, W may be interpreted as R- 1

, where R = cov {e(k)} is usually diagonal. 
(1b) Goodwin and Sin [2], proposed a covariance resetting method which has the same effect, i.e. 

P(k) is prevented from getting too small . This is accomplished by resetting it to a fixed large value 
whenever a measure of its size, for example its trace, falls below a prespecified threshold. 

(1c) Greater flexibility can be achieved by basing the estimator on an explicit model of the parameter 
variation. This leads to the idea of state estimation and Kalman filtering [3]. In this approach equation 
(5) is supplemented by 

O(k + 1) = O(k) + v(k), (7) 

where v(k) is white noise with cov {v(k)} = Q. The covariance matrix Q can be used to describe how 
fast the different components of (J are expected to .vary. Applying the Kalman filter equations to the 
system described by (5) and (7) yields 

P(k) = P(k- 1)- P(k- 1)u(k)uT(k)P(k- 1)[ w(k)- 1 + uT(k)P(k + 1)u(k)r 1 + Q , 

O(k) = O(k - 1) + P(k)u(k)w(k)[y(k) - uT(k)O(k- 1)]. 

Observe that in this context P(k) is prevented from getting small by replacing it with, 

M(k) = P(k) + Q, Q > 0. 

(Sa) 

(Sa) 

(2) In fault detection schemes based on parameter estimation [5] or Kalman filtering techniques [S] . 
In this framework the system is described by equation (5) but time variation of the parameters is 
modeled to occur at unspecified times during the process operation as: 

O(k + 1) = O(k) + O"k ,av, (9) 

where o denotes the change time and O"k 8 is the unit step which is zero if k < o and 1 otherwise. If no 
change (fault) occurs, o is infinite. ' 

Now, since the algorithms defined by (2a), (2b) or (4a), (4b) have infinite memory, a system fault 
may take a prohibitively long time to be detected if these estimators are used as primary fault detectors. 
One way out of this problem is to use a sliding window of data values, thus making the detection 
mechanism more responsive to the onset of failure while maintaining good estimation properties as 
proposed by Basseville [1], Tanaka and Muller [7] and Willsky [S]. 

In the rest of the paper sliding window equivalents of the above recursions are developed, which 
reduce the amount of computations needed, thus making them especially suitable for incorporation in 
online computerised fault detection systems. In addition the estimates are optimal with respect to the 
current data window, providing a more attractive alternative to the algorithms described by (6a), (6b) 
or (Sa), (Sb) . Furthermore, sliding window estimators require the specification of only one design 
parameter, namely window length, thus providing a simple solution to the detection problem. 

2. The algorithms 

The algorithms are developed m the same sequence as outlined above. The scalar output case 
described by 

y(k) = uT(k)O + e(k) 

is considered first. In the usual way, define 
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and 

y = [y(1) 0 0 0 y(k)f 0 

Furthermore , for a moving window of length n w, define 

Then 

l
u T(k-n w+2)l [ +] u = --- --:--- - = l!_~~-k-~~~ - -21 

k + l 0 T 0 

- - ----- --- u (k + 1) 
ur(k + 1) 

The iteration for U ~ U k is considered first. 

and 

r T [u\k-nw+1)] U U = [u(k - n + 1) I U (k k- n + 2)] - -- - - ------
k k w ' w U(k , k- nw + 2) 

= u(k - nw + 1)uT(k- n w + 1) + UT(k, k- nw + 2)U(k , k- nw + 2)' 

[

U(k , k- nw + 2)] 
Ur U = [Ur(k k- n + 2) I u(k + 1)] ------------

k+ l k +l ' w ur(k + 1) 

= u(k + 1)uT(k + 1) + UT(k, k- nw + 2)U(k, k- n w + 2) 

= U~Uk + u(k + 1)uT(k + 1)- u(k - nw + 1)uT(k - nw + 1) 

=U~Uk+r(k+1), 

where 

r(k + 1) = u(k + 1)u\k + 1)- u(k- nw + 1)uT(k - nw + 1) o 

Secondly, the iteration for U~yk is considered . Define, 

then 

Hence 
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[ 
y(k - nw + 1) ] 

UTy = [u(k - n + 1) I UT(k k- n + 2)] -----------
k k w ' w y(k, k- nw + 2) 

= u(k - nw + 1)y(k- nw + 1) + UT(k, k- n w + 2)y(k, k- nw + 2) ' 

[
y(k , k- nw + 2)] 

UT y = [UT(k k- n + 2) I u(k + 1)] -- ---------
k+t k+i ' w y(k + 1) 

= u(k + 1)y(k + 1) + UT(k, k - nw + 2)y(k, k- nw + 2) 

= uJyk + u(k + 1)y(k + 1)- u(k- nw + 1)y(k- nw + 1) 

=vJyk+o(k+1) , 

where 

o(k + 1) = u(k + 1)y(k + 1)- u(k- nw + 1)y(k- nw + 1). 

Now 

A T - 1 T 
O(k + 1) = (U k+tUk+l) V k+lYk+t · 

Defining 

P(k + 1) = (UJ+1Uk +t ) -
1

, 

which is the covariance of the estimate O(k + 1), we get 

and 

iJ(k + 1) = P(k + 1)[u Jyk + o(k + 1)] 

= P(k + 1)[P - 1(k)O(k) + o(k + 1)] 

= P(k + 1)[(P- 1(k + 1)- r(k + 1))0(k) + o(k + 1)] 

= iJ(k)- P(k + 1)[r(k + 1)0(k)- o(k + 1)], 

23 

(10) 

(11) 

(12) 

It should be remembered that O(i) is estimated using information from the last nw samples. Equations 
(11) and (12) form the sliding window least squares estimator (SWLSE). Note that in this simple case a 
further reduction of (12) is not needed since only one inversion is required. The reduction in speed is 
proportional to the length of the window since the dimensions of P, r and o are independent of the 
window size (they are m x m, m x m and m x 1 respectively). 

The improvement in speed over the classical batch sliding window LSE is shown in the operations 
count table for the scalar case (Table 1). No special methods for better performance of individual 
operations (matrix inversion) are taken into account, since these would apply equally well to both cases. 
It should be noted however that memory requirements are not reduced, since at any one time all the 
window values must be accessible. The scalar case considered may serve as a guideline for speed 
improvement in the vector versions that follow. 

The sliding window weighted least squares estimator (SWWLSE) is similarly obtained. 
For the vector output case, where 

y(k) = H(k)x + v(k), 
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Table 1 
Operations count for window size n"' (scalar case) 

Recursive version 

Estimate updating 
Covariance updating 
Total 
Inversions 

define 

Additions 

7/e = [H~1)] ' oy = [y(t)] ' 
H(k) y(k) 

Multiplies 

4m 2 + 2m 
0 
4m 2 + 2m 
one (m x m) 

and for a moving window of length nw 

Then 

and 

Batch 

u'u 
[uTur!uTy 
Total 
Inversions 

[
7/e(k, k- nw + 2)] 

7/eT 'Je = [7/eT(k k- n + 2) I HT(k + 1)) ----------- · 
k + I k+I ' w H(k+ 1) 

Additions 

(n w -1)m 
m 2 + m(n.,- 2) 
m 2 +2mn., -3m 

= HT(k + 1)H(k + 1) + 7/eT(k, k- nw + 2)7/e(k, k- nw + 2) 

where 

= 7!eJ7!ek + HT(k + 1)H(k + 1)- HT(k- nw + 1)H(k- nw + 1) 

= 7!eJ7!ek + G(k + 1), 

G(k + 1) = HT(k + 1)H(k + 1)- HT(k- nw + 1)H(k- nw + 1). 

Analogously to the scalar case, it is obtained, 

7KJ+Ioyk+I = 7!eJOJJk + D(k + 1), 

where 

D(k + 1) = HT(k + 1)y(k + 1)- HT(k - nw + 1)y(k- nw + 1)' 

and finally 

x(k + 1) = x(k)- P(k + 1)[G(k + 1)x(k)- D(k + 1)), 

P - 1(k + 1) = P- 1(k) + G(k + 1). 

Multiplies 
2 n .,m 

m
2 

+mn"' 
m 2(n., + 1) + mn., 
one (m x m) 

(13) 

(14) 

(15) 
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Equations (14) and (15) form the vector equivalent of the SWLSE. A form similar to the Kalman 
filter equations is not possible to be obtained since the matrix D(k + 1) cannot be guaranteed to be 
positive definite. However, the reduction in computation is still high. 

For the general case where the errors are weighted by a non-diagonal matrix, the so called Markov 
estimate is given by equation (6a). In this case, 

Recall that in a Marcovian context the weights, possibly time-varying, are interpreted as the 
covariances of the error sequence 

R(k) =COY (v(k)) = W - 1(k) 

Define 

and 

The affected iterative equations are the ones involving the estimate covariance P. They are calculated 
as follows: 

(~;+ rg}l;1r~k + r) = ~;+ r'?ll(k, k- nw + 2)~k + l + ~J+ rR - r(k + 1)~k+r 

= ~;'?ll ;! ~k + HT(k + 1)R- 1(k + 1)H(k + 1) 

+ HT(k- nw + 1)R-\k- nw + 1)H(k- nw + 1). 

Therefore 

Equations (14) and (16) form the sliding window estimation formulae for the multivariable Markov 
estimate. 

All the above estimation schemes are started using the corresponding one-shot formulae for the data 
of the starting window (first nw measurements). 
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4. Illustrative example 

To illustrate the effectiveness of the proposed method, consider the fluid pumping circuit of Fig. 1, 
which is to be monitored for possible leaks. The equations describing the dynamic behavior of this 
system are [ 6]: 

dMl 2 
dt = c1M 1 (t) + cd(M1 , w), 

M 1 (t)- M 6 (t) 
M

1
(t) =rJ, 

where 

c = 1 

A 
c2 = rJliL + /(1 - rJ) ' 

and the physical parameters denote 

M;(t): fluid flow rate at point i (kg s- 1
) 

w(t): pump rotational speed (s - 1
) 

f(M 1> w): characteristic of pump 
p: fluid density (kg/m3

) 

A: friction coefficient 
rJ: leak flow rate as percentage of M 1 (%) 
D: diameter of pipe (m) 
A: cross-sectional area of pipe (m 2

) 

g1 : loss coefficient of valve positioned before the leak 
g2 : loss coefficient of valve positioned after the leak 

l: total length of pipe (m) 
l 1L: length of pipe from point 1 to leak point (m) 
l L 6 : length of pipe from leak point to point 6 (m) 

.------l·':;<jf---- --- ---1/ 

5 4 L 3 2 

Fig. 1. Pumping system. 

1~1 
L_j 

1 

(17a) 

(17b) 

(18) 

(19) 
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In particular, if the characteristic of the pump is expressed in the form 

(20) 

where h; are appropriate known pump constants and w(t) is taken as the input to the system, equations 
(17a)-(17b) can be conveniently written as , 

(21a) 

M 1(t) - M 6 (t) 
Ml(t) =821' 

(21b) 

where 

(22a) 

81 2 = a.Z!L + l(l- a-) ' 
(22b) 

Ah 3 

81 3 = o-f!L + /(1- a-) ' 
(22c) 

(22d) 

Equations (21a) , (2lb) and (22a)-(22d) fully describe the dynamic behaviour of the system and the 
values of their parameters can be used to decide whether a leak has occurred or not. This is 
accomplished by estimating the values of the parameters /1 L and a- which should be zero in normal 
(no-leak) operation. Equations (21a)-(21b) are linear-in-the-parameters differential and algebraic 
equations respectively and therefore the parameter vectors 0; can be estimated from input-output data 
using the proposed techniques. To this end, for every measurement pair y 1 (k), y 2 (k), equations 
(21a)-(21b) can be written in discrete time in the form of equation (lb) as follows: 

Y;(k) = ui(k)O; + e;(k) ; k = 0, th, . .. , nth, ... , (23) 

where 

dM 1 1 
y 1(k)=Cft t =k 

(output data) 

M 1 (t)- M 6 (t) 
Yz(k) = Ml (t) (output data) 

u 1(k) = [M~(k) w(k)M1(k) w
2(K)] (input data) 

u2 (k) = 1 (input data) 

(unknown parameter vector) 

(unknown parameter vector) 

and th is the sampling interval. 
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The whole scheme was simulated on a microcomputer with the following data: l =130m, D = 0.07 m, 
p = 1000 kg / m3

, ~ = 2.25, ,.\ = 0.0035. A valve was placed at a distance of 112 = 5 m from the beginning 
of the pipe, while the pump was operated using equation (20) with h 1 = -314.97, h 2 = 0.316, 
h

3 
= 0.02053. An artificial leak of r:r = 2% developed at t = 750 s at a point /11 = 60 m resulting in 

~1 = 2.25, ~2 = 0. As input to the system a harmonic signal given by w(t) = 1500 + 500 sin( 7Tt/ 25) was 
applied. The system was simulated for 2000 s. Equation (21a) was solved using a fifth order Runge­
Kutta with variable step length. For the numerical differentiation a nine-point central difference 
formula with step h = 0.5 was used . The detection window size was nw = 100. If the above parameter 
values are substituted in equations (22a)-(22c), the parameter vectors for the no fault situation are 

81 = ( -1.90683849 X 10-2 9.3547 X 10- 6 6.087 X 10-7
), 

82 = [0]' 

while when the leak occurs 

81 = ( -1.95553081 X 10-2 10.4837 X 10-6 6.811 X 10- 7
), 

82 = [2]. 

purnpsf11: Fault at t= 750. size ·4.869232E-04. window 0 

- .. 200L ~.s:: 

,_'-D 
::;:: ~ 100 
I- ~ . 

0 ~ 
£ o r• -~ 

-1 oo I ----.__ 
[00 1.00 ~oo aoo 

tirne 
thousands 

x Th( 1. 1) estimate: -6.365443E-02j ~"'· 
Th( 1. 1) true -1.955531 E -02 

purnpsf11: Fault at t= 750. size 1.129015E-06. window 0 

;:::'E 4.00L 
C'i -1:5 
::;:: ~ 2.00 
>--'"' :::J 

_g 0 00 • --------
~ . ~ --

-2.00 ' ' 
QOO 1.00 ~oo aoo 

tirne 
thousands 

x Th( 2. 1) estimate: 6.068011 E -04 j B 
T h( 2. 1) true: 1 048371 E ·05 

Fig . 2. Parameter estimates with no window. 

purnpsf11: Fault at t= 750. size 7.335025E-08. window 0 

- .. 
~.s:: 

M'C 
r=-~ 
i='E 

1~} n 

·20 
-10 i 
-30 -+----.,....-----~--~ 

0.00 1.00 2.00 3.00 

time 
thous.onds 

• T h( 3. 1) estimate ·1 333838E ·06 j C 
T h( 3. 1) true 6. 811 095E -07 

J. 

• 
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purnpsf11 : F c.ult at t= 750, size -4. 869232E -04, window 1 00 

;:::-~ 1 000 l iii r-~-u ~X 

£' ~ X X 
t-:J X~ 

0 ----------£ 

-100 -1-----.------....------. 
0.00 1.00 2.00 

x Th( 1, 1) estimate: -1.967744E-02 
Th( 1, 1) true: -1.955531 E -02 

3.00 

time 
thousands 

A 

purnpsf11: Fault at t= 750, size 1.129015E -06, window 1 00 

;:::-~ 1.00] 
N''D 
~ 16 0.00 j ---.. 
1-1 -1 .00 4 

-2.00 -1------.-------..------. 
QOO 1.00 200 100 

time 
thousands 

• Th( 2, 1) estimate: 1.198301 E -05 B 
Th( 2, 1) true: 1.048371 E -05 

Fig. 3. Parameter estimates with window= 100. 

pumpsf11: Fault at t= 750, size 7.335025c -U8, window 1 00 

I- E 

2.00 

r 
x X 
X X 

~1 :::: 1 
0.00 1.::==-~==:::------, 

0.00 1.00 2.00 

• T h( 3, 1) estimate: 6. 76515E -07 
T h( 3, 1) true: 6 811 095E -07 

3.00 

time 
thousands 

c 
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In Figs. 2 and 3 the results of a comparison simulation are shown. The noise variances were 
var{e1(k)} = (0.0005)2

, var{e2 (k)} = (0.05)2
• As seen from Fig. 2, if no window is used, RLS cannot 

track the parameter change. On the contrary, as Fig. 3 illustrates , the proposed sliding window 
estimator works very satisfactorily, giving very good leak size and position estimates. In the case of a 
real system greater accuracy is expected since the sample will exceed the 2000 mark used in the 
simulations. Furthermore, it must be emphasized that the harmonic test input used is the worst possible 
case and covers every combination of actual inputs . 

4. Conclusions 

Iterative sliding window estimators are presented which may be used in cases where infinite memory 
estimators are not desirable or inappropriate. They are particularly useful in computerised fault 
detection implementations where increased sensitivity to new data is needed for fast failure alarm rates. 
The choice of the window length , nw, is usually a tradeoff between false alarm and missed detection 
rates. This issue has not been addressed in this paper but is currently under research. The decrease in 
computational load resulting from the iterative nature of the formulae , make these algorithms attractive 
for large dimension systems where on-line fault detection schemes were not possible to be applied. 
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