
 

  
 

Abstract— In this paper a methodology for detecting sensor 
failures in building energy management systems (BEMS) is pre-
sented. The fault diagnosis decision criterion is the average abso-
lute prediction error between the actual and the predicted values 
of the sensor. The predicted value is calculated by a model based 
on faultless operation data. Three experiments are presented 
with simulated biases in the temperature, illuminance and CO2 
sensors. Although the concept is simple, the results for fault de-
tection are quite satisfactory. 
 

Index Terms— Fault detection and diagnosis, sensors, building 
energy management systems. 

I. INTRODUCTION 

Energy is a mainstay of modern industrial society 0. The 
energy sources on which the European energy infrastructure is 
based are mostly fossil fuels, namely petroleum,n  natural gas 
and coal. The energy use can be divided into three end use 
segments: transportation, residential and commercial build-
ings, and industrial ones. Each of these sectors consumes 
about one-third of the total energy use. The energy consump-
tion in the building sector represents almost 40% of the total 
energy consumption in Europe whilst contributing significant-
ly to the greenhouse gas emissions. On the other hand, there is 
increasing international concern with climate change, and the 
targets agreed by the European Union under the Kyoto Proto-
col to reduce emissions of greenhouse gases in 2010 by 8% 
compared to 1990 levels represent a real challenge 0, 0. The 
complexity of systems deployed on modern buildings, neces-
sitates the use of optimal control. During the last years, there 
is a rapid convergence of the technologies of Informatics, Mi-
croelectronics and Control Systems leading to novel ap-
proaches and solutions for energy and building automation 
related problems.  

As the ‘intelligent building’ is passing nowadays its  phase 
of maturity, a great number of manufacturers offer integrated 
solutions (i.e. the ORCA system of Delta Controls based in 
BACNET architecture, SIEMENS EIB, ABB, etc).  

The fault detection and diagnosis (FDD) technology pro-
vides the capability to deal with complex problems that are 
related with the uninterrupted operation of various systems 
 
 

even in a fault regime. 
The uninterrupted system operation is based on the normal 

operation of each of the system parts. In building energy and 
indoor environment management systems these parts are: (i) 
sensors, (ii) actuators and (iii) interfaces (wiring) and soft-
ware. 

Sensor information is very important, since its malfunction 
is amplified through the feedback loop.  It is therefore not 
surprising that a significant effort has been put in designing 
fault detection and diagnosis subsystems for sensors.  Stan-
dard methodσ for detecting sensor failures include utilizing 
the consistency of redundant measurements, estimating ex-
pected values from measurements, and intelligent methods 
(neural nets, fuzzy methods, genetic algorithms). 

Fault detection and diagnosis of building HVAC systems 
usually uses data from sensors to get information on whether 
the system has faults or not. A Building Energy Management 
System usually stores the sensors measured data and is access-
ible from an FDD system. The use of measured data leads to 
different FDD systems. These can be either knowledge- (0, 0) 
or model-based (0, 0, 0). 

In the present paper a fault detection algorithm is presented 
for building energy management system sensors built around 
the SIEMENS EIBUS architecture. 

II. PROBLEM STATEMENT 

The problem that we are tackling is the detection of sensor 
failures of the control system depicted in Fig. 1. The equations 
representing Fig. 1 are: 

Nonlinear state equation: xk+1 = f(xk, uk, dk)  
Noisy measurements: yk = xk+nk 
Fuzzy controller: uk = g(r, yk)  

The state space vector is:             
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Fig. 1. The control diagram 
 

Tin  the indoor temperature (°C) 
Tmr  the indoor mean radiant temperature (°C), 0 
hin  the indoor relative humidity (%) 
vin  the indoor wind velocity (m/s) 
lin  the indoor illuminance levels (lux) 
Cin  the indoor CO2 concentration (ppm)  

The measurement vector is, 

yi = xi + ni 

where ni is unknown white noise, and the control vector, 
[ ] [ ]TT
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where 
S:  the shading opening; 0 (fully shut) to 1 (fully 

open). 
W:  the window opening; 0 (fully shut) - 100% (fully 

open) . 
AC: the air conditioning operation duration; -100% 

(cooling) to +100% (heating) as a percentage of 
sampling period. 

L: the lighting level; 0 (lights off) – 1 (lights fully 
on). 

The disturbances vector consists of (indicative): 

tout: the outdoor temperature (°C), measured. 
sd: the number of smoking people. 
np: the number of occupants. 
vout: the outdoor wind velocity. 
dout: the outdoor wind direction. 
od: the opening and closing of doors. 
lout:the outdoor illuminance. 
hout: the outdoor relative humidity. 
tapp: the thermal casual gains. 
CO2.out: outdoor CO2 concentration. 

Finally Α is the actuators and P the overall installation. 

I. MODELING AND IDENTIFICATION 

For each sensοr a linear-in-the-parameters, lumped pa-
rameter model of the following form is identified:  

yp(k) = yp(k-1)+β1⋅f1(u(k-1), yp(k-1), d(k-1)) +…+ 
βm⋅ fm(u(k-1), yp(k-1), d(k-1)) 

(3) 

where k is the time of sampling,  f a non linear function 

(actually bilinear), u the actuators that influence the value 
of each specific sensor, y the measured values of the sen-
sors, d the measured values of disturbances and βi the coef-
ficients that are estimated using a least squares method. 

It should be noted that (3) is different for each sensor.  
To identify the faultless models, data were sampled at 2 

mins. over a 12-hour period (360 samples).  The period of 
experiments was February 2005. 

It is important to have an idea of the actuator values dur-
ing the experiment, so as to judge the identification excita-
tion properties.  These are shown in Fig. 2, along with the 
external temperature plot (remember we are dealing with a 
scaled plant-booth, inside a laboratory; this explains the 
rather high values relevant to the season). 
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Fig. 2 No fault actuator and external temperature histories 

As can be seen, the values for the external shutter (S) and 
window opening (W) are rather constant.  In order to over-
come this deficiency, small normal artificial noise was add-
ed. 

The identification results follow. 

A. CO2  Concentration 
The indoor CO2 concentration at time k is considered a 

function of the indoor concentration at time k-1, the open-
ing of windows W and the outdoor CO2 concentration. 
Since the outdoor CO2 concentration is not measured in 
these experiments, it is considered constant.  Since outdoor 
CO2 concentration remains fairly constant a good fit is ex-
pected.  Therefore, 
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CO2(k) = CO2(k-1)+α1⋅W(k-1)[CO2,out-CO2(k-1)] 

= CO2(k-1)+β1⋅W(k-1)+β2⋅W(k-1)CO2(k-1) 
(4) 

where β1= 0.16, β2= -0.00039.  Fig. 3 shows the good fit of 
this model on the faultless CO2 data. 
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Fig. 3. Actual and predicted CO2 values on faultless model 

B. Illuminance 
The indoor illuminance at time k is considered a function 

of the shading opening S, the indoor electric lighting level 
L, and the outdoor illuminance (Eq. 5). The outdoor illu-
minance varies significantly and therefore cannot be consi-
dered constant.  However it is not measured in the current 
measurements, and is expected to deteriorate the process 
performance.  

Illin(k) = a1⋅S(k-1)⋅Illout + a2⋅L(k-1) 

= β1⋅S(k-1) + β2⋅L(k-1) 
(5) 

with β1= 77.66, β2 = - 43.5.  Fig. 4 shows the expected (bad) 
fit. 
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Fig. 4 Actual and predicted indoor illuminance values on faultless model. 

C. Temperature 
The indoor temperature at time k is considered a function 

of the indoor temperature at time k-1, the window opening 
W, the air conditioning level AC and the outdoor tempera-
ture Tout. Since the outdoor temperature is measured a good 
fit is expected. 

Tin(k) = Tin(k-1) + β1⋅AC(k-1)+ β2⋅W(k-1)[Tout(k-1)-Tin(k-1)] + 

β3⋅[Tout(k-1) - Tin(k-1)] 

= (1-β3)⋅Tin(k-1) + β1⋅AC(k-1)+ β2⋅W(k-1)[Tout(k-1)-Tin(k-
1)] + β3⋅Tout(k-1) 

(6) 

where β1=0.0088, β2=0.0049, β3=-0.07.  Moreover this eq-
uation implies that in the absence of control, the internal 
temperature approaches the outside at a rate dependent on 
the building characteristics (expressed by the lumped para-
meter β3). 

Fig. 5 shows the achieved good fit of this model on the 

faultless Tin data. 
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Fig. 5 Actual and predicted indoor temperature values on faultless model. 

D. Relative Humidity 
The relative humidity at time k is considered a function 

of the relative humidity at time k-1, the window opening W, 
the air conditioning level AC and the outdoor relative hu-
midity.  Likewise the latter quantity is not measured and is 
expected to affect the quality of the model, since it is consi-
dered constant, although it slowly varies. 

Humin(k ) = Humin(k-1)+a1⋅AC(k-1)+a2⋅W(k-1)[Humout(k-1)-Humin(k-1)] 

= Humin(k-1) + β1⋅W(k-1)+β2⋅AC(k-1)+β3⋅W(k-1)Humin(k-1) (7) 

where β1= 1.64, β2= -0.0021, β2= -0.025.  Fig. 6 shows the 
fit of this model on the faultless relative humidity data. 
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Fig. 6 Actual and predicted indoor relative humidity values on faultless 
model. 

II. FAULT DETECTION 

The performance criteria for the fault diagnosis system 
are the following: 

• Capability of detecting multiple faults in different 
sensors simultaneously. 

• Detection speed. 
• Number of false alarms or non detection of existing 

faults (missed detections). 
• Size of the detected fault. 

The proposed solution utilizes a function δy(k) which 
represents the difference between n the predicted value 
(yp) and the actual value (yr) of each monitored sensor: 

δy(k) = yp(k) - ym(k) 

The decision is based on the mean absolute prediction er-
ror (MAPE) defined by the following equation: 

ε(k)=│δy(k)│ (8) 

The MAPE is compared to an upper threshold which is 
calculated by the sample data under normal operation via, 

∑
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Ν

Ν
ε

1
)()(1ˆ

i
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where N is the sample size. 
The methodology used to decide whether a fault exists or 
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not consists of the following steps: 

• At time k  the quantity 
wnε  is calculated for each 

sensor by: 

∑
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where nw is the data window length used to robustify the 
procedure. 

• If εε ˆ)( ⋅> ck
wn  then a fault in the respective sen-

sor is declared, otherwise not. If the fault condition 
remains for a significant number of samples then 
the fault certainty increases. 

The parameters nw and c are estimated using trial and er-
ror in order for the overall procedure to satisfy the perfor-
mance criteria. In the specific study nw=100 and c=2.   

III. EXPERIMENTAL RESULTS 

The test bench is a scaled plant with the dimensions of a 
phone booth, especially developed for testing control algo-
rithms in BEMS.  It is equipped with the following sensors: 
(i) temperature (indoor and outdoor), (ii) relative humidity, 
(iii) CO2 concentration, (iv) indoor illuminance and (v) 
indoor wind velocity. It is wired on the Siemens Instabus 
protocol and interfaced to MATLAB via its OPC server 
toolbox.  It controls automatically its heating and cooling 
requirements by a small A/C unit, its indoor lighting levels 
by movable shading devices and artificial lighting and its 
indoor air quality by movable windows.  The control algo-
rithm is a fuzzy rule based on the mean predicted vote 
(MVP) notion [9]. 

We performed four experiments (one for each sensor) 
with a simulated bias of -40% in the corresponding sensor 
value effected at sample k=20. Sampling was done at 2 
mins. and the experiments were run for 12 hours each. 

For each sensor the following graphs are produced: 
1. The evolution of the decision criterion, i.e. the win-

dowed mean absolute prediction error (WMAPE) 
together with its upper level for each sensor. This 
graph shows that a malfunction of a sensor is not 
mistakenly identified. 

2. The evolution of the predicted and actual values. 

3. The evolution of the involved actuator values.  This 
is useful for comparison with the identification data 
and the explanation of possible shortcomings of the 
detection procedure. 

A. Malfunction of indoor temperature sensor 
The problem in the operation of the temperature sensor is 

detected only for the specific sensor as it is shown in Fig. 7 
(WMAPE for Tin is higher than its upper level). No fault is 
detected for all the other sensors apart from relative humidi-

ty. The reason for the detection of error in the relative hu-
midity sensor is that the relative humidity model is esti-
mated with W equal to 20% (Fig. 2) and the model is “con-
fused” by the 40% window opening that occurs at time 
k≈180 (Fig. 8). This can be overcome if the learning data 
are improved. 

0

5

M
A

E
 (C

O
2)

Sensor plots: fault in Tin, size 40, sample 20, window 100, 18.5.47 24/2/2005, sampling time 2 mins.
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Fig. 7 Sensor and fault criterion plots in the simulated temperature sensor 
fault 
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0 50 100 150 200 250 300 350 400
20

30

40

W

0 50 100 150 200 250 300 350 400
0

0.5

1

L

0 50 100 150 200 250 300 350 400
-1.5

-1

-0.5

A
C

0 50 100 150 200 250 300 350 400
23

24

25

26

T ou
t

sample no.

 
Fig. 8 Actuator plots in the simulated temperature sensor fault 

B. Malfunction of illuminance sensor 
The malfunction of the indoor illuminance sensor does 

not cause false alarms for any of the other sensors as de-
picted in Fig. 9: the WMAPE for illuminance is higher than 
its upper level indicating the fault of the specific sensor, 
while all the others are within normal operation limits.  This 
is somewhat surprising given that outdoor illuminance is 
considered constant in our model. 
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Sensor plots: fault in Ill, size 40, sample 20, window 100, 16.20.59 25/2/2005, sampling time 2 mins.
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Fig.  9 Sensor and fault criterion plots in the simulated illuminance sen-
sor fault 
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Fig.  10 Actuator plots in the simulated illuminance sensor fault 

C. Malfunction of the CO2 sensor 
The malfunction of the CO2 sensor is not detected as de-

picted in Fig 11. The reason for that is that the relevant ac-
tuator values for this sensor are similar both in the normal 
and faulty case (i.e. 20%, see Fig. 2).  This can be predicted 
mathematically if we consider the relevant equations [10]. 
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Sensor plots: fault in hum, size 40, sample 20, window 100, 20.35.56 5/3/2005, sampling time 2 mins.
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Fig.  11 Sensor and fault criterion plots in the simulated humidity sensor 

fault 

Fig. 12 shows the relevant actuator and external distur-
bance plots for this experiment. 
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Actuator plots: fault in hum, size 40, sample 20, window 100, 20.35.56 5/3/2005, sampling time 2 mins.
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Fig.  12 Actuator plots in the simulated humidity sensor fault 

IV. CONCLUSIONS 

The proposed sensor fault detection system is operating 
satisfactorily,   although it is fairly simple. Some shortcom-
ings can be corrected if the influence of the outside distur-
bances is minimized.  This can be achieved if they can be 
measured.  Further improvements can be effected by a more 
appropriate training set for each sensor (persistent excita-
tion).  Future research will concentrate on carrying over the 
experiments described here to a real size plant (Laboratory 
of Industrial Systems at Technical University of Crete). 
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