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Abstract: Structural control techniques can be used to protect engineering structures. By computing
instantaneous control forces based on the input from the observed reactions and adhering to a
strong control strategy, intelligent control in structural engineering can be achieved. In this study,
we employed intelligent piezoelectric patches to reduce vibrations in structures. The actuators
and sensors were implemented using piezoelectric patches. We reduced structural oscillations by
employing sophisticated intelligent control methods. Examples of such control methods include
H-infinity and Hy. An advantage of this study is that the results are presented for both static and
dynamic loading, as well as for the frequency domain. Oscillation suppression must be achieved over
the entire frequency range. In this study, advanced programming was used to solve this problem
and complete oscillation suppression was achieved. This study explored in detail the methods and
control strategies that can be used to address the problem of oscillations. These techniques have
been thoroughly described and analyzed, offering valuable insights into their effective applications.
The ability to reduce oscillations has significant implications for applications that extend to various
structures and systems such as airplanes, metal bridges, and large metallic structures.

Keywords: vibration; intelligent control; piezoelectric structures; Hacriterion; H-jyg;1,, criterion

1. Introduction

In this study, a smart engineering structure was used for vibration suppression. Vibra-
tion suppression in smart structures involves the use of advanced materials and technolo-
gies to control and reduce unwanted vibrations for various engineering applications [1-8].
Smart structures integrate actuators, sensors, and control algorithms to adapt to varying
conditions and improve performance. The following are the key aspects of vibration
suppression in smart structures. Smart materials play a crucial role in the suppression
of vibrations. Piezoelectric materials are a common type of smart material. When these
materials are subjected to mechanical stress, they generate electric charge [2-7]. They are
capable of serving as actuators as well as sensors, converting mechanical vibrations into
electrical signals and vice versa.

Several researchers have used piezoelectric smart structures to suppress vibration [7-13].
Smart structures utilize piezoelectric actuators and sensors. Piezoelectric actuators have
revolutionized smart engineering structures by providing precise, responsive, and efficient
control mechanisms [14—-17]. Their applications across various fields, from aerospace and
civil engineering to robotics and optics, demonstrate their versatility and effectiveness.
Despite some challenges related to material limitations and costs, ongoing research and
technological advancements have been poised to overcome these hurdles, paving the way
for broader adoption and new innovations in smart engineering structures. The application
of piezoelectric materials as actuators in intelligent engineering structures is a rapidly
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growing field driven by the unique properties of piezoelectric materials and their ability
to perform precise and responsive control functions [18-22]. An in-depth analysis of this
subject shows that piezoelectric actuators leverage direct and inverse piezoelectric effects,
converting electrical energy into mechanical motion, and vice versa. This enables them
to function as both sensors and actuators. Piezoelectric actuators can be very small and
lightweight, which is beneficial for applications where weight and space are critical, such
as in aerospace and medical devices [23-27].

In this study, piezoelectric materials were used as actuators and sensors. We employed
co-localized actuator pairs implanted in laminated composite beams (piezoceramic PZT
G-1195N, with a Young’s modulus Ep of 6.3 x 10! N/m?) composed of graphite/epoxy,
glass/epoxy, and metallic (aluminum) beams. Advanced materials and systems, termed as
smart piezoelectric structures, utilize the distinctive characteristics of piezoelectric materials
to provide intelligent, adaptive, and frequent self-monitoring capabilities. Piezoelectricity
denotes the capacity of a material to generate an electrical charge when subjected to
mechanical stress. However, these materials may be distorted when an electric field is
applied. The use of smart materials is a key component of vibration suppression in smart
structures. Piezoelectric materials are among the most commonly used smart materials.
These materials possess a distinctive capability to generate an electric charge when subjected
to mechanical stress [6-11]. This property enables them to function as actuators and sensors
capable of converting mechanical vibrations into electrical signals, and vice versa.

Numerous researchers have explored the use of piezoelectric smart structures for
suppressing vibrations [7-17,28]. The integration of piezoelectric actuators and sensors into
smart structures has been transformative, offering precise, responsive, and efficient control
mechanisms, which have significantly advanced the capabilities of smart engineering
structures [14-20,28].

This work can make an important contribution to engineers who want to apply new
smart materials with appropriate control techniques that can contribute to the reduction in
oscillations [6,7,29-31]. In the field of both civil and mechanical engineering, an important
problem is the reduction in oscillations created by dynamic loads, such as earthquakes
and wind. The methods and control techniques used were described in detail in [32].
This work has important applications because the problem of reducing oscillations is a
common problem for both civil and mechanical engineers [32]. These applications can be
used in airplanes, metal bridges, and large metal structures. Structures are stressed by
dynamic loads such as wind and earthquake loading [32]. This paper outlines and explains
the various methods and control techniques used to address this issue. This research is
highly relevant because it addresses the shared challenge of oscillation. The applications
of the outlined methods are broad, potentially benefiting areas such as airplane design,
metal bridges, and large metal structures, all of which are subjected to dynamic stresses
from wind and seismic activity. The development of effective strategies to control these
vibrations is essential for the stability and durability of these structures.

When materials are subjected to an electric field, they can experience distortion,
a phenomenon that holds significance for engineers working on the development and
application of advanced smart materials. By employing appropriate control techniques,
these smart materials can play a vital role in minimizing oscillations, which is a crucial
concern in various engineering fields. This issue is especially relevant for both civil and
mechanical engineers, who frequently grapple with the challenge of reducing vibrations
caused by dynamic forces such as earthquakes and wind.

These structures are often exposed to dynamic loading conditions, including those
imposed by wind and seismic activity, which can induce vibrations that compromise their
stability and integrity. Therefore, it is essential to develop and implement effective control
techniques for reducing vibration. The findings of this study could lead to advancements
in the design and maintenance of structures that are more resilient to dynamic stresses,
ultimately enhancing their safety, performance, and longevity. This study plays a crucial
role in advancing the reduction in oscillations, which is an area of significant concern
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in engineering. This research begins with a comprehensive modeling process utilizing
the finite element method as the foundational approach. The equations used for this
modeling are meticulously detailed, specifically in Equations (1)—(10), providing a thorough
understanding of the application of the finite element method in this context.

Subsequently, this study introduces equations pertinent to control theory, which is
an essential aspect of managing and reducing oscillations. A key focus is placed on the
derivation of the transfer function, which is fundamental in control theory to understand
how systems respond to various inputs. This derivation is presented in detail to ensure
clarity in the development and application of the transfer function.

The analysis within the study was multifaceted, employing both state-space domain
and frequency domain analyses. The state—space domain analysis is elaborated upon
through Equations (10) to (14), offering insights into the system’s behavior in the time
domain representation. Additionally, frequency domain analysis is thoroughly explored
in Equations (15)—(33), providing an in-depth examination of how the system responds
to different frequencies. By combining these analytical approaches, this study offers
a comprehensive strategy to address and mitigate oscillations in various engineering
applications.

2. Motion Formula of the Smart Structure
The beam formula for both mechanical and electrical loads is calculated by [7,17-19,28,33]:

84y(t, x)
x4

+pbAbM = fu(t,x) + fe(t, x) 1)

EI
o2

E is Young’s modulus, I is the moment of inertia, p is density, A is area, fe is the
electrical force, and fy, is the disturbance (mechanical force) [33].

Figures 1 and 2 depict a smart beam incorporating an embedded piezoelectric actuator
that produces a mechanical load in the form of a force when subjected to an electrical
current [6,7]. Figure 1 shows a smart beam with embedded actuators.

/w/ /i
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le actuator j

y

Figure 2. One pair of actuator patches.
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Figure 2 shows the actuator integrated into the beam. This figure shows the ends of
the actuator used in further equations, which are very important for the electrical matrices
of our system. All modeling is based on Equation (1) [33]; from the solution of this equation,
the results are given in the time domain. The results without control are given by applying
the differential, whereas the results with control are given after the application of the
infinity control.

To determine the electric force generated by the piezoelectric actuator fe(t,x), the
following equation was used:

9*Mpx(t,
folt x) = Z2t?) el

where My is the piezoelectric actuator’s bending moment.
Where Pzt (piezoelectric patch) placed on the beam is indicated by the step function H.
The bending moment My is given by

Mpx(t, ) = Coepe () [H (x — x1j) — H (¥ — x37) Ju;(£) ()

This equation is derived from the theory of piezoelectric materials, where [16,17]

Co = EI'Kf (4)
. 12EE,fihy (21 + Iy 5
f =
16E21* + EE, (321%h, + 2423 + 8hh, ) + E3h
The piezoelectric patch mechanical tension epe(t) is derived by
d
epe(t) = %uj(ﬂ (6)
p

The constant d3; combines the electric intensity epe(t) with the electric voltage u(t),
which is generated in an actuator j (Figure 2). Where ds; is the piezoelectric constant d31 =
280 x 10712 m/V (Table 1).

Table 1. Smart beam specifications (graphite/epoxy T300/976).

Specifications of the Beam Value

L stands for length 1.40 m

W stands for the width 0.07m

h is height 0.02m

p represents the density 1700 kg/m?

E is the Young’s modulus 1.8 x 101 N/m?

Pzt thickness is bs and ba 0.003 m
d31 is the electrical conductivity 280 x 10712 m/V

Thus, Function (3) can be expressed as a flexural moment as follows:
Mpx(t,x) = Cy[H(x — x1j) — H(x — xg;) |u;(t) (7)

where

Cp = EIK; %1
hP
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The electric force is obtained as follows using Equations (2) and (3):
fe(t,x) = Cpugj(t) [6'(x — x1j) — &' (x — x2j)] ®)

The following function, which depicts the smart beam’s response to the dynamic
(electrical) force generated by the piezoelectric patch and the lateral dynamic disturbance,
was derived using Equations (1) and (8):

o*y(t, x) N pbAbazy(t, x)

El————~
x4 ot?

= qo(t) + Cpuj(1)[6" (x — x15) — 8 (x — x27)] 9)
In the case of j-equivalent piezoelectrics (Figure 3), Equation (9) becomes

oty(t, 2y(t, ,
El%f) + pbAb% = qo(t) + Cputj (1) )i, [6' (x = 1) = &' (x — x3)]

where 8’(x) is the derivative of the Dirac function with respect to its independent variable.
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Figure 3. An intelligent beam that incorporates piezoelectric actuators and sensors.

From the solution of the partial differential equations of the beam, we pass to the
finite element method, which transforms the system of the beam into a system of ordinary
differential equations. The solution of the finite elements converges with the solution of the
partial differential equation by increasing the number of elements. In the next chapter, the
tables of the damping stiffness mass matrices and electrical matrix used for the modeling,
as calculated by the authors, are used [1,33,34].

2.1. Modelling

In this work, the Eyler-Bernoulli beam equation (Equation (1)) is used, by integrating
this equation and using a Hermite multivariable, the local matrices are derived for the
mass, stiffness, and damping electric charge matrices of the structure. Assembling is then
performed on the global stiffness model. A reference related to the finite element method is
given [1,33]. In our analysis, we use two degrees of freedom in the finite element method—
the transport deflection 1\ and the rotation. In addition, we use two different disturbances,
one static and one dynamic.

The goal of this study was to reduce oscillations using intricate control techniques and
piezoelectric materials. In particular, the locations of piezoelectric actuators were defined.
Figure 4 shows the actuators positioned at each of the four points (labels 1, 2, 3, and 4)
along the beam. The dynamical description of the system is given by [1,35]

Mg(t) + Dg(t) + Kq(t) = fm(t) + fe(t) (10)

where fe represents the results of the electromechanical coupling affecting the global control
force vector, D is the viscous damping matrix, K is the global stiffness matrix, and M is
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the global mass matrix. fm is the mechanical vector of the global external loading and fe
is the electrical vector. The independent variable is a vector q(t) composed of transversal
deflections {; and rotations wj, or

qt)=| : (11)

where n denotes the finite element number employed in the analysis [7]. As is common
practice, we switch the representation to a state-space control form [9-15].

0 x(t) = Egg (t)
= et L ) W
_ O2nxn 02nx2n Dnxon q(t)
e ol s o B8]
=[] ]+ [ e ][40

Figure 4. The actuators were positioned over the entire smart structure.

Additionally, the value f¢(t) is denoted as where the unit’s piezoelectric force (of size
2n x n) is when it is placed on the proper actuator.

[0 0 0 0 7

cp —cp O 0

0 0 0 0

0 ¢ —c 0

Fe)=|o O o o (13)

0 0 cp  —cp

0 0 0 0

L O 0 0 cp |
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where u denotes the actuator voltage. The disturbance vector is denoted as d(t) = fr (t). Then,

v | Oonxon Ionxon O2nxn O2nx2n
0= | Bt Bk [ oo + e

= Ax(t) + Bu(t) + Gd(t)

— AX(t) + [BG] [‘58]

= Ax(t) + Bu(t),

(14)

The output function (displacement measured alone) can be used to enhance this result.
y(t) = [x1(t) x3(t) ... xn — 1(t)]T = C x(t)

where
C=[100...0,-1010...0,000-101...0,0000-101...0]

The ability to convert mechanical stress into strain, and vice versa, is a feature of
the piezoelectric effect. The reduction in oscillations attained in this study is based on
this. Actuator pairs co-localized with piezoceramics (PZT G-1195) were employed in
our simulation for laminated composite beams made of graphite/epoxy, aluminum, and
glass/epoxy (Figure 5). Table 1 lists the specifications of the smart beams.

—
—
—
—_—
=

Figure 5. Smart structure.

2.2. Connection to the Issue of Beam Control

The given problem involves taking the disturbance (d) and measurement noise (n) as
inputs and producing displacement measurements (y) and controller voltages (u) as the
outputs. The provided structural diagrams and equations were employed to simulate this
particular issue involving a beam and were implemented using MATLAB v. 5.0. In the
frequency domain, the objective is to determine the optimal transfer function N. To achieve
this, it is beneficial to derive the input-output relationships for the initial model [16,21].

[‘el] — B(s) [ﬂ = 7= F(s)w
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as illustrated in Figure 5.
In Figure 6, K(s) is the controller, d is the disturbance, e is the error, n is the noise, u is
the control voltage, and x is the state vector.

—: K(s) ID

L

<
)

T .

Where the beam is explained by [31]

x(t) = Ax(t) + [BG] [

u(t)
d(t)

In the frequency domain, the transfer function H(s) is

H(s) = (sI — A)~!

L
&

Figure 6. Beam with noise output, error, disturbance input, and controller.

|

y

= n

(15)

J is used to select the states that we aim to control, which may differ from y. In most

studies, J is

o O O

o O O O

SO = O

o O O O

o= OO

o O O O

_ o O O

o O OO

o O OO

o O O O

o O O O

o O O o

We commenced by gradually re-performing Figure 6.
It is clear from Figure 7 that the disruption to the inaccuracy in the transfer function is

d

_D

_[>

Tge =J-(I — HBKC) 'H-G

D

H

o O O O

o O O O

o O O O

B

N

K

Figure 7. Block diagram disturbance and errors.

(16)

o O OO

(17)

e

J b

Equation (17) is a frequency domain equation, and an attempt was made to derive the

transfer function Tde that relates the external disturbance to the error.
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It is evident from Figure 8 that the noise-to-error transfer function is
Tre = J-(I — HBKC) 'HBK (18)
n e
| K [ B b H b D
c (
Figure 8. Noise and errors in block diagram form.
Figure 9 illustrates the disturbance for controlling the transfer function:
T4y = (I — KCHB)'KCH-G (19)
d u
— 6 H e k >
B K
Figure 9. Disturbance and control voltages presented in a block diagram form.
Figure 10 shows that the noise-to-control transfer function is
Tou = (I — KCHB) 'K (20)
n u
Dl K P
¢ 4— 1 k— 8 K
Figure 10. Noise and control voltages presented in a block diagram form.
When we combine these, we obtain
e = J-(I-HBKC) 'H-Gd + J-(I-HBKC) 'HBKn (21)
u = (I-KCHB) 'KCH-Gd + (I-KCHB) 'Kn (22)
or
[ (I—KCHB) 'KCHG  (I—KCHB) 'K d] )
J(I— HBKC)_lHG JI— HBKC)_lHBK n
I T ] F(s)w (24)
e Fde Fre| [0

We proceeded by making the necessary weighting adjustments and redesigning
Figure 6 to fit our particular issue.
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Next, we created a new version of Figure 11, restructuring it into a two-port diagram.
This new diagram should be formatted in a manner similar to that depicted in Figure 6.
This comparison will help us better understand the differences and similarities between

the two representations.

Uy d, VAN
A $ ew
‘ Wi(s) We(s)
Wi(s) J7 d S
e
~ G
y Il y
n V X A
[) K(S) ieeek] [) B _D(g)—p H(s)
u AV4
C
| n My
Y @(}7 Wa(s) k—
Figure 11. A block diagram showing the beam scenario’s weights.
In Figure 12, x and v are auxiliary signals.
P9
Ew
N w. D
‘ N e z
dw_ d Uy
’ J W, D
Av4
7~
w G
nw_-D W, L [
L \/
B e X
B
“ i
Yn
K
Figure 12. Diagram with two ports for the beam issue.
We were investigating why
Quw(8) = Ppu(s) + Pou(8)K(s) (I — Pyu(s)K(s)) ' Pyw(s) (25)
such that
z = Qzww =F(P, K)w (26)

We then attempted to identify P(s). The necessary transfers carried out were
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ew = WeJx = WeJHv = WeJH(GWddw + Bu) = WeJHGWddw + WeJHBu (27)

uw = Wuu (28)
yn = Cx + Wnnw = CHv + Wnnw = CH(GWddw + Bu) + Wnnw = (29)
CHGWddw + CHBu + Wnnw
Combining all these results in
Uw 0 0 Wu dw
ew| = |WJHGWy 0 WJHB| |nyw (30)
Va CHGWy W, CHB u
or
)=l il &
Vn wa Pyu u
where
_ 0 0 | Wy _ _
Prw = {We]HGWd 0} , Pou = {WQJHB]’ Pyw = [CHGW4 W,], Py, =CHB  (32)

However, further steps are required to obtain Qij. To do sp, we used Equation (18),
noting that
d = Wyqdw, n = Wpny, ey = Wee, uy, = Wyu

-] o) -

o] =1 o™ wl ]

[uw} _ lwu(I—KCHB)lKCHGWd W, (I — KCHB) 'KW,,

Hence,

or

dw
WeJ(I—HBKC) 'HGW4  WJ(I— HBKC) "HBKW, [nw}

Cw

Thus, the matrices in

_ ul _ |Qu Qi |4
2 = QW or M B {Qzl sz} M

From the natural partitioning to express P in state-space,

A B, B,
P(s)= |C; Dy1 Dpo| = [Pzwgg gzugzg] (33)
C2 Dy Do yw e

(where the shortened format is used), and K’s corresponding form is

o e o

Equation (29) describes the equations

x(t) = Ax(t) + [B1 B {w(t)}

sl = o+ [ Be][u)]
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and
xK(t) = AKxK(t) + BKy(t)
u(t) = CKxK(t) + DKy(t)
3. Results
3.1. H) Norm

In the control theory, the H; norm or H; performance is used to evaluate the perfor-
mance of a system [6,7,25-27,29,30]. Significantly, it quantifies a system’s ability to reduce
noise and disturbances by measuring its energy in response to white noise. The H; norm
of the system is defined by taking the square root of the sum of the squares of the impulse
responses. The total system power response to a unit impulse input can be represented
by the Hy norm. It is an indicator of the amount of energy from the input signals that are
attenuated or amplified across all frequency intervals by the system. In principle, a lower
Hj-norm indicates higher disturbance rejection and noise attenuation capacity. Minimizing
the H norm is often a goal in the control system design, particularly in optimal control
frameworks. The use of the Hj criterion for controllers that perform well under different
operational circumstances is widespread in practice because it combines performance with
robustness [16-21,28].

Controller design in control systems aims to reduce the Hy norm, particularly in
optimal control frameworks. Because it strikes a good balance between robustness and
performance, the H; standard is a popular choice for controller design that must operate
effectively across various operating conditions [16-21,28]. In summary, the H, norm of
control theory is useful for building systems that work well on average, even with noise
and disturbances. Engineers can then reduce the H, norm to develop controllers that
enhance the overall robustness and energy efficiency of a system [1,6,7,25-27,29-31,35,36].

3.2. H-Infinity Norm

The Heo (H-infinity) norm is crucial in control theory, particularly when designing
robust controls to assess and ensure system performance in worst-case scenarios [11,35,36].
The highest gain that the system can gain from its input to its output at all frequencies is
indicated by the Hoo norm. This denotes the amount of noise or disturbance that can be
amplified by the system in the worst-case scenario. A lower Hoo norm will practically result
in a more robust system because it is unlikely to cause significant damage, even during
worst-case situations. Therefore, it is necessary to minimize this norm when designing
control systems for robust performance. The Heo control structure aims to design controllers
with good performance despite uncertainties and worst-case disruptions. Systems that
require dependability and safety, such as those in aerospace, are where they matter the
most [16-21,28].

It is possible to compute the Hoo norm for state—space representations. Describe a
system in which y = Cx and x" = Ax + Bu. Solving the algebraic Riccati equation (ARE) for
any given PPP matrix and verifying whether the closed-loop system is stable will yield the
Hoo norm. The H; norm is not equal to Hoo because it calculates the entire energy response
of the system to the white noise inputs. The Hoo norm considers the worst-case scenario,
whereas Hj provides an assessment of performance averaged over time. Therefore, the Hoo
norm is more appropriate when a high degree of robustness is required [2,11,35,36].

In summary, the Hoo norm plays the most important role in the robust control theory by
demonstrating the highest possible amplification of disturbances by a system. Designing
controllers that minimize the Hoo norm allows control engineers to guarantee robust
stability even under extreme difficulties. The results are then presented in the following
format: in the first case, a sinusoidal loading amplitude of 12N was applied, followed by
constant loading. The result is a comparison of control Hy with Heo. Structures apply the
Hj norm or H, performance as a measure of performance, as used in control theory. In
particular, it measures the power of the system output due to white noise inputs to show
how effectively the system can dampen noise and interference.
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uncontrolled

Hinf

3.3. H-Infinity and Hy Norms Comparison

The H) norm is dissimilar to the Hoo norm, which is defined as the peak value of the
system gain at all frequencies. The H, norm averages the energy measure and the Hoo
norm concentrates on the maximum response. Depending on the design requirements,
control engineers may choose to minimize either H, or the Hoo norm.

In practice, the H, norm is beneficial for systems where disturbances and noise are
random processes with known statistical characteristics. It is especially useful in cases
where the ability of an antenna to work in a frequency range is more important than its
ability to work at a precise frequency.

The Heo norm is another form of the norm and is defined as the maximum gain of
the system at any frequency. It estimates the phase margin to account for the maximum
possible amplification of the disturbances or noise by the system. For a fair comparison,
it was necessary to arrange the results to show that a lower Heo norm better reflects the
robustness of the system because the system is less influenced by worst-case disturbances.

One part of the code for H-infinity controller (Figure 13) is

fd

fd plot

disturbance \ 4

x_inf|

x'= Ax+Bu

4 y = Cx+Du

P u_inf

Hinf controller B plant

n
n
nt

noise 1

) 4 outputs

n plot

noise

Figure 13. Nominal performance in Simulink, where Wd, Wn, Wu, and We are the whets of our
system for disturbances (d) noise (n), control vector (u), and error (e); x is the state vector and y is
the output; in the displacement the rotation and the control vector (u), K is our control (H-infinity or
Hy). In the results, we take the diagram for the open loop (without control) with H-infinity and the
H, controller.

AT = AOQ;
BT = [BmO zeros(2+*nd, nd/2) BeO];
CT = [J; CO];

DT = [zeros(nd, nd) zeros(nd, nd/2) zeros(nd, nd/2); zeros(nd/2, nd)
eye(nd/2) zeros(nd/2, nd/2)]

gbeam2 = ss(AT, BT, CT, DT);

szk = size(Kinf.a, 1);

[Kinf, Scl12, gaml12] = hinfsyn(gbeam2, nmeas, ncont)

save Kinf.mat Kinf

return

% full weight

systemnames = ¢ beam0 y sd se su Wu We Wn Wd’;

inputvar = ‘[ n(4); d(8); u(4) 1°;



Algorithms 2024, 17, 505

14 of 23

outputvar = ‘[ We; Wu; y+Wn]’;
input_to_sd = ‘[wd]’;
input_to_su = ‘[ul’;
input_to_se = ‘[beam0O]’;
input_to_beam0 = ‘[ sd+su ]7;
input_to_y = ‘[ beam0 ]’;
input_to_Wd = ‘[ d 17;
input_to_Wn = ‘[ n ]17;
input_to_We = ‘[ se 17
input_to_Wu = ‘[ u ]7;

return

Kinf

3.4. Mathematical Modeling Results

Figures 14 and 15 compare the rotations and translations of the nodes in the smart
architectures with and without control, respectively. This analysis highlights the significant
impact of the control system. Without control, the nodes exhibited substantial rotational
movement, indicating a lack of stability and an increased susceptibility to oscillations.
Conversely, the rotations were markedly reduced with the control system in place, demon-
strating the effectiveness of the system in enhancing stability and minimizing unwanted
movements. This comparison underscores the critical role of the control mechanism in
retaining the structural integrity and performance of the smart structures.

x10° 1st node K10 2nd node
1t without control 1k without control saus .
et o -~ 7\“‘—-,\
c c A H: control i
= Heo control pi = He control g
50 5 0K =
o o N 7
o e o @ %0 . /./
At Ak T— i
1 1 1 1 [ 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0.1 0.2 03 04 05 06 0.7 038 0.9 1 0 01 0.2 03 04 05 06 07 08 09 1
Time sec Time sec
x16° 3rd node x 10" free end
g without control o . without control
o \‘\.
B / H:control o il
S He control = N\ = i Hew control
: AN
o o« e
1t S
1 1 1 1 1 1 1 1
0 0.1 0.2 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Time sec Time sec

Figure 14. Comparing the nodes’ rotations in the smart structures both with and without control.

In Figure 14, the four nodes of the smart structure rotations are depicted for three
different scenarios: with Hy control, Heo (H-infinity) control, and without any control. The
results clearly show that Heo control provides the best performance, as the rotations are
nearly zero. This indicates that the Heo control method is highly effective in minimizing
rotational movement systems [1,6,7,11,25-27,29-31,35].

Similarly, Figure 15 illustrates the displacements of the four smart structure nodes
under the same three scenarios: with H, control, with Heo control, and without control.
The comparison reveals that Hoo control yields a superior outcome. The displacements
were almost zero when the Heo control was applied, demonstrating its effectiveness in
minimizing positional deviations. Thus, the Hoo control proved to be the most effective
method for reducing both rotations and displacements in smart structures.
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Figure 15. Analyzing and contrasting the smart structure node displacements with and without control.

The results are then provided in detail for the static loading of 12 N at the free end of
the smart structure. In Figures 16-18, a concentrated force (12N) is applied to the edge of
the carrier, and the displacement at the edge of the carrier quickly stabilizes at 0.015 sec.
This shows the very good operation of the model. In addition, what is also the goal of the
specific problem is achieved, i.e., a reduction in oscillation since with the blue line, we have
a result with control where I is a reduction in distortion, while with the green line, I is the
open loop in which the oscillation is much greater.

Figure 16 illustrates the displacements for all the nodes of the smart beam, where
the H-infinity control criterion is employed. The results are highly impressive because
the displacements were negligible. This illustrates how the H-infinity control strategy
effectively reduces the displacements while maintaining the stability and structural integrity
of the smart beam under static loading scenarios. The near-zero displacement highlights
the superior performance and robustness of the control system [6,7,26,30,31].

Figure 17 depicts the rotations for all the nodes of the smart beam using the H-infinity
control criterion. The findings were exceptionally impressive as the displacements were
nearly imperceptible. This underscores the efficacy of the H-infinity control approach
in reducing displacements to a minimum, thereby ensuring the structural integrity and
stability of the smart beam under static loading scenarios. The minimal rotations for all
the nodes of the smart beam highlight the superior performance and robustness of the
implemented control system.
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Figure 16. Results of displacements with and without control when applying static loading at the

beam’s free end.
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Figure 17. Results of rotations with and without control when applying static loading at the beam’s

free end.
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Figure 18. Control voltages for each smart structure node. The numbers 1, 2, 3, and 4 correspond to
the four piezoelectric actuators (voltages) present in the smart beam.

The results for the four smart beam nodes are shown in Figure 18. This figure shows
the piezoelectric stresses produced, which are necessary for damping oscillations. The data
provided a clear insight into how piezoelectric elements contribute to reducing vibrational
movement, highlighting the effectiveness of the smart beam design in mitigating oscillatory
behavior through targeted stress generation.

Next, sinusoidal loading was applied while utilizing the H-infinity control theory. The
results are highly impressive, as there is a noticeable reduction in oscillations. Figure 19
shows the displacement of the structural free end with and without the installed control
system. These findings were remarkable, showing a complete reduction in oscillations when
the control system was implemented. This highlights the efficacy of the H-infinity control
theory in managing and mitigating vibrational movements and ensuring the structural
stability and performance of smart structures under sinusoidal loading conditions. A
comparison between the controlled and uncontrolled scenarios underscores the significant
impact of the control mechanism on achieving optimal structural behavior. Figure 20 shows
the displacement of the 3rd node of the structure with and without the control system.
The results are remarkable, revealing the complete elimination of oscillations when the
control system is active. This underscores the efficacy of the H-infinity control theory in
reducing vibrational movements and ensuring the performance and stability of the smart
structure under sinusoidal loading conditions. The comparison between controlled and
uncontrolled scenarios highlights the crucial role of the control mechanism in optimizing
the structural behavior. The control voltages under sinusoidal disturbances for all the nodes
of the smart structures are shown in Figure 21. These voltages are crucial for counteracting
disturbances and maintaining structural stability. By applying these control voltages,
the system effectively mitigates the impact of sinusoidal disturbances, ensuring optimal
performance and reducing oscillatory behavior in smart structures. A detailed analysis
of these control voltages highlights their significance in achieving precise and efficient
control over structural responses. Figure 21 shows the generated piezoelectric stresses,
which are essential for damping oscillations. The data offer a clear understanding of how
piezoelectric elements help reduce vibrational movement, emphasizing the effectiveness of
smart beam design in mitigating oscillatory behavior through precise stress generation.
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Figure 19. Smart structure’s free end displacement with (H-infinity) and without control (open loop, OL).
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Figure 20. Displacement of the 3rd node of the smart structure presented with (H-infinity) and
without control (open loop, OL).

Figure 22 presents a Bode diagram of the smart structure, which illustrates the fre-
quency response of the system. This diagram provides critical insight into the gain and
phase shift of a smart structure over a range of frequencies. By analyzing the Bode dia-
gram, one can assess the performance and stability of the control system and identify how
effectively it mitigates disturbances and responds to various frequencies. The Bode plot
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highlights key characteristics such as resonant frequencies and bandwidths, which are
essential for understanding and optimizing the dynamic behavior of a smart structure.
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Figure 21. Control voltages for all the nodes of the smart structures under sinusoidal disturbances. The

numbers 1, 2, 3, and 4 correspond to the four piezoelectric actuators (voltages) present in the smart beam.
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Algorithms 2024, 17, 505

20 of 23

4. Discussion

This approach employs intelligent control techniques with a robust controller that
minimizes the oscillations. Thus, a review of the parameters and their utilization in
enhancing the system efficiency, as well as the system survey used to determine the crash
resilience of the system. Considerable importance is attached to the disturbance rejection of
smart structures that incorporate piezoelectric materials. This work contributes significantly
to the reduction in oscillations. The initial modeling was performed using the finite element
method. Subsequently, the equations for control theory are given. Equations (1)—(10) aid in
the computation of the matrices for mass, damping, and stiffness as well as the matrices
input to the electric charge matrix because of the piezoelectric patches.

All registers were calculated by the authors. Both state—space domain analysis
Equations (10)—(14) and frequency domain analysis Equations (15)—(33) were used. The
results first show us the comparison of the two controllers. Initially, both controllers should
make a reduction in the oscillations in relation to the results without control (this is carried
out by both). The two controllers are then compared to each other to see which achieves
the greatest reduction.

By combining the H-infinity and H; methods within the simulated state—space and
the frequency of characterization, this study examined the benefit of resilient control in
intelligent systems. This study proposes a step-by-step method for generating and imple-
menting stable controllers that are acceptable for intelligent structures. It proposes a robust
approach for structural identification by strong control and deals with a state—space model
and the frequency domain constructed from the output and input data of the structure.
A controller for reducing vibrations is created using this control paradigm. The main
concern of the theory is to control the variability of the system behavior. Vibration con-
trol techniques have been applied to minimize vibrations through dynamic disturbances,
which are vital in mechanical systems, where operations might occur under stochastic
loading scenarios. In this study, oscillations were completely suppressed, which was not
achieved in earlier studies. In this work, two control techniques to suppress oscillations
are employed, and a comparison is made. The results are good in both the frequency
and state spaces. All calculations were performed with great accuracy owing to the op-
timized intelligent control systems. Although this topic has been discussed by several
academics [1-3,11,35,36], the current study’s findings are superior to those of prior re-
search [2—4,14,33,36].

The advantages of this work include the following: MATLAB was used to program
and manipulate the measurement noise from the beam condition to obtain the above results.
The total oscillations were suppressed and simultaneously, the order of the controller was
reduced. White noise was applied as the disturbance input, and its amplitude was described
in terms of disturbances. This is aimed at the development of reliable controllers for smart
structures with piezoelectric materials to address ambiguity and improve disturbance
rejection. This study delves into the various methods and control techniques used to address
this issue and provides a comprehensive description and analysis. The findings of this work
hold substantial importance as they offer practical solutions to the widespread problem
of oscillation reduction, which is a common concern in both the civil and mechanical
engineering disciplines. The applications of this research are far-reaching, with potential
uses in the stabilization of airplanes, metal bridges, and large metals. It should be noted
that MATLAB codes are written by the article authors, and no code is off-the-shelf or taken
from elsewhere. The finite element theory and advanced control theory were used. Initially,
it was applied to a beam because the computational requirements for this model with
infinite control are very large.

5. Conclusions

This study combined H, and H-infinity control to achieve complete vibration re-
duction in intelligent structures. Specifically, in vibration suppression applications, the
resilience of the H-infinity controller to parametric uncertainty is emphasized. This study
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provides an excellent example of the benefits of active vibration suppression and robust
control in the dynamics of intelligent structures. H-infinity control considers the mod-
eling uncertainties that are difficult to introduce using different techniques. To do this,
we used advanced programs written by the authors. The novelty of our work lies in the
application of the H-infinity control theory specifically for oscillation damping, combined
with its implementation using the finite element method. In our work, we managed to
fully suppress the oscillations using the controller H-infinity. The piezoelectric material
was inserted along the entire length of the beam. Reliable control systems can benefit
from the many advantages of H-infinity control, which minimizes oscillations even when
actuator placements vary. Numerical modeling validates that the suggested techniques are
successful in lowering vibrations in piezoelectric smart structures. Herein, the benefits of
robust control in intelligent structures are explored through the application of H-infinity
regulation in both state and frequency domains.
The following are the key aspects of this work:

1. Hj and H-infinity control are combined to achieve comprehensive vibration reduction
in smart structures.

2. Demonstrating the resistance of H-infinity control to parametric uncertainties.

3.  Highlighting the benefits of robust control and active vibration suppression in intelli-
gent structures.

4. Showing that H-infinity control can minimize oscillations regardless of actuator placement.

5. Validating the effectiveness of the proposed vibration reduction methods through
numerical modeling.

6.  H-infinity regulation was used to investigate the advantages of strong control in
intelligent structures in both state and frequency domains.

7. Results in the frequency domain and time-space domain: The study presents results
in both the frequency domain and time-space domain, providing a comprehensive
understanding of the system’s dynamic behavior and control performance.

This study significantly advances the understanding and application of control meth-
ods in intelligent structures, thereby demonstrating the effectiveness of robust control
techniques. In our research, we successfully managed to fully eliminate oscillations by
employing the H-infinity control method. To achieve this, we incorporated piezoelectric
elements along the entire beam length to ensure comprehensive coverage for optimal
control. The modeling and simulation of the system were performed using custom codes,
specifically compiled and developed by the authors, to accurately represent the dynamics
of the system. A detailed description of the experimental setup, as well as the outcomes of
the physical tests, will be presented in future work and publications.
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