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PREFACE.

IN March, 1875, the usual biennial notice was issued, giving the
subjects for the Adams Prize to be adjudged in 1877, The
following is the chief portion of the notice :

The University having accepted a Fund raised by several members
of 8t John’s College for the purpose of founding a Prize to be called the
Adams Prize, for the best essay on some subject of Pure Mathematics,
Astronomy or other branch of Natural Philosophy, the Prize to be
given once in two years, and to be open to the competition of all
persons who have at any time been admitted to a degree in this
University— :

The Examiners give notice that the following is the subject of the
Prize to be adjudged in 1877 : TThe Criterion of Dynamical Stability.

To illustrate the meaning of the question imagine a particle to slide
down inside a smooth inclined cylinder along the lowest generating line,
or to slide down outside along the highest generating line. In the
former case a slight derangement of the motion would merely cause
the partlcle to oscillate about the generating line, while in the latter
case the pa.rtlcle would depart from the generating line altogether.
The motion in the former case would be, in the sense of the question,
stable, in the latter unstable.

The criterion of the stability of the equilibrium of a system is,
that its potential energy should be a minimum; what is desired is, a

R. A, b



vi . PREFACE.

corresponding condition enabling us to decide when a dynamically pos-
sible motion of ‘a system is such, that if slightly deranged the motion
shall continue to be only slightly departed from.

The essays must be sent in to the Vice-Chancellor on or before the
16th December 1876, &c., &c.

8. G. PHEAR, Vice-Chancellor.
J. CHALLIS.

G. G. STOKES.

J. CLERK MAXWELL.

The pressure of other engagements for some time prevented
me from giving my attention to the subject. This essay was
therefore almost entirely composed during the year 1876. It is
now printed as it was sent in to the Examiners, the changes being
merely verbal. Some few additions have been made where ex-
planation appeared to be necessary, but all these have been
marked by square brackets, so that they can be at once dis-
tinguished from the original parts of the essay.

In order to shorten the essay as much as possible many
merely algebraic processes have been omitted and the results only
are stated. It is hoped that this will add clearness as well as
brevity to the reasoning, as the attention of the reader will not
be called from the argument to follow a manipulation of symbols
which may not present any novelty.

The line of argument taken may be indicated in a genera.l way
as follows. Chapter 1 begins with some definitions of the terms
stable and steady motions. It is then pointed out that whether
the forces which act on the system admit of a force-function or not,
the stability of the motion, if steady, is indicated by the nature
of the roots of a certain determinantal equation. The boundary
between stability and instability being generally indicated by the
presence of equal roots, a criterion is investigated to determine
beforehand whether ®qual roots do or do not imply instability.
This case being disposed of, the consideration of the determinantal
equation is resumed. Two general methods are given by which,
without solving the equation, it may be ascertained whether the

ma m
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character of the roots imply stability or instability. These occupy
Chapters 11, and 11. In the first method a derived equation is
made use of, and it is shown that a simple inspection of the signs
of the coefficients of the several powers in these two equations will
decide the question of stability. In the second method a certain .
eagy process is found which if performed on the determinantal
equation will lead to the criteria of stability. At the end of the
third Chapter a geometrical interpretation is given to the argu-
ment.

In the fourth Chapter the forces which act on the system
are supposed to have a force-function. The determinantal equa-~
tion is then much simplified. Several points are considered in
this Chapter which are necessary to the argument, such as the
proper method of choosing the steady co-ordinates (if there be
any), the distinction between harmonic oscillation about steady
motion and that about equilibrium, and the changes which must
be made in the determinantal equation when the equations of
Lagrange become inapplicable. A method of modifying the
Lagrangian function is also given by which, in certain cases,
the fundamental determinant may be reduced to one of fewer
rows and columns,

In the fifth Chapter a series of subsidiary determinants is
formed, and it is shown that at least as many of the conditions
of stability are satisfied as there are variations of signs lost in the
series in passing from one given state to another. It is also shown
that this is equivalent to a maximum condition of the Lagrangian
function. :

In the sixth Chapter the energy test of stability is considered.
It is also shown that, when the motion is steady, this reduces
to the same criterion as that indicated in Chap. V.

In the seventh Chapter the question considered is whether .
the stability of a state of motion can really be determined by an
examination of the terms of the first order only. In some cases
these are certainly sufficient, and an attempt is made to discrimi-
nate between these cases and those in which the terms of the
higher order ultimately alter the character of the motion.

If the Hamiltonian characteristic and principal functions be
given, the conditions of stability as regards space only, or both
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space and time may be deduced. But if these be not known as
expressed in the Hamiltonian form, we may yet sometimes dis-
tinguish between stability and instability if we can determine
whether a certain integral ceases to be a minimum at some instant
of the motion, This is the subject of the eighth chapter.

As part of the third edition of my treatise on the Dynamics of
Rigid Bodies was written at the same time as this essay, there are
necessarily points of contact between the two works. Thus the
subjects of the first part of the seventh chapter and of a portion
of the sixth will be found discussed in the treatise on Dynamics.
But as the objects of the two books are not the same, it will be
found that in all these cases there are considerable differences in
the modes of demonstration. ’

EDWARD J. ROUTH.

PETERHOUSE,
August 14, 1877.
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CHAPTER 1.

Definitions of the terms small quantity, stable motion, steady motion.
Arts. 1, 2. i A

4 system of bodies in steady motion is stable if the roots of a certain
determinantal equation are such that their real parts are all negative.
Art. 3.

Effect of equal roots, and a test to determine whether equal roots do or do
not introduce terms which contain the time as a factor. Arts. 4—T.

Object of Chapters II. and III. Art. 8.

1. Let us suppose a dynamical system to be set in motion

_under any forces and to move in some known manner. If any

small disturbance be given to the system, it may deviate ouly
slightly from its known motion, or it may diverge further and
further from it. Let 6, ¢, &c. be the independent variables or
co-ordinates which determine the position of the system, and let
the known motion be given by 6=86,, ¢ = ¢,, &c. where 6,, ¢,, &ec.
are known functions of the time ¢. To discover the disturbance of
the system we put § =0,+x, ¢=¢,+y, &. These quantities
x, 9, &c. are in the first instance very small because the disturb-
ance is small. The quantities =, y, 2, &c. are said to be small
when it is possible to choose some quantity numerically greater
than all of them, which is such that its square can be neglected.
This quantity may be called the standard of reference for small
quantities.

If, after the disturbance, the co-ordinates =, y, 2, &c. remain
always small, the undisturbed motion is said to be stable; if, on the
other hand, any one of the co-ordinates become large, the motion is
called unstable.

It is clear that the same motion may be stable for one kind of
disturbance and unstable for another. But it is usual to suppose
the disturbance general, so that if the motion can be made un-

stable by any kind of disturbance (provided it be small) it is said

to be unstable. On the other hand, it will be called stable only
when it is stable for all kinds of small disturbanzes.

R. A. 1



2 DEFINITIONS, [cHAP.

2. To determine whether z, y, 2, &c. remain small, we must
substitute for 6, ¢, &c. in the equations of motion their values
0,+2, ¢, +vy, &c. Assuming that z, y, &c. remain small, we may
neglect their squares, and thus the resulting equations will be

. . . de d'z dy d%
. linear in @, y, #, &c. The coefficients of z, a3 aE Ve I &e.

in these equations may be either constants or functions of the
time. In the former case the undisturbed motion is said to be
steady for these Co-ordinates, in the latter unsteady. In the case
of a steady motion 2, y, 2, &c. are all functions of the time
which has elapsed since the disturbance and of certain constants
of integration which are determined by the initial values of
x, %, Y, %, &c. We may therefore define a steady motion to be
such that the same change of motion follows from the same initial
disturbance at whatever instant the disturbance is communicated
to the system. )

If all the coefficients in the equations to find =, y, z are con-
stant, they may be made to contain ¢ by a change of co-ordinates.
Thus we may write for #, ¥, 2, &c.

z=af+Bn+...
y=df+Bn+...
z=&ec.

where a, 8, &c. are any functions of £ we please. Conversely, when
the coefficients are functions of ¢, we may sometimes make the
coefficients constant by a &lf'oper change of co-ordinates. But this
cannot always be done. there are m co-ordinates, we have n*
arbitrary functions «, 8, &c. at our disposal. In each of the n
linear equations of motion we may have three terms for each
co-ordinate, and thus we have (3n — 1) n coefficients to make con-
stants. We have therefore in general too many equations to
satisfy. The proper method of choosing the co-ordinates of refer-
ence will be considered in a future chapter.

3. Let us suppose a dynamical system to be making small
oscillations under the action of any forces which may, or may not,
possess a force function and to be subject to any resistances which
vary as the velocities of the parts resisted. The general equations
of motion will then be of the form

(A,%,+Alo% +Ao)x+(B,~%+B,%+ B,)y+&.=0

, & ,d , ,d ' d ,
(Aztw‘l'Ax ¢Tt+A°)w+( za?l-l-Bl %+B0)y+&c°=0
&e.=0
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To solve these equations we write
=M™, y=Me™, &ec.

Substituting we obtain a determinantal equation to find m.
If we put '

A=Am’+Am+4,, B=Bm'+Bm+B,

A=4A'm+A'm+ A), &e.
this equation may be written in the simple form
4, B, C..... =0.
4, B, (...

We may also write the equation in the form f(m) = 0.

The coefficients M, M’, &c. are not independent, but if we
represent the minors of 4, B, 0, &c. by a, b, ¢, &c. we may easily
show that

M M M ..

a b c
We also have

M M M &

=gy =-—=dacC

a b

It may be shown by properties of determinants that these
equations all give the same ratios. If A, be the second minor
obtained from the determinant f(m) by omitting the first and
second rows and columns, we know that

A, f (m)=ab' —a'd.

Hence if f(m) =0 we have 37=

Y o~

7.

In the same way we may show that g—,= g,, and so on. This

E;operty of Determinants is given in Dr Salmon’s Higher Algebra,
sson IV, Ex, 1.

. The general solution of the equation may therefore be written
in the form

z=Lae™ + Lage™ +...
y=Lbem + Lhe™+...¢0)
z =&e.

where L,, L, ... are arbitrary constants, a, a, &c. the values of
the minor a when m, m,... are substituted for m 5 by, b, ... the

1—2



4 NATURE OF THE STABILITY [cHAP.

values of the minor b when similar substitutions are made, and
50 on.

4. We see that the whole character of the motion will de-
pend on the signs of the quantities m, m,... If any one be real
and positive, z, y, &c. or some of them will ultimately become

e, and the steady motion about which the system is oscillatin

ill be unstable. If all the roots are real, negative or zero an
unequal, the motion will be stable.

If two of the roots be imaginary we have a pair of imaginary
exponentials. If these imaginary roots be a + 8y —1, the terms
can be rationalized into

e (N, cos Bt + N, sin St).

The motion will be stable if & be negative or zero, and unstable
if a be positive.

If two roots be equal, the form of the solution is changed. Let
my=m, + h where h will be ultimately zero, we then have

z=Laemt+ L, (ale"‘l‘ + %‘n hem™t axhte"“‘) .

If we now make L, and L, infinite in the usual manner, we

find .
z= {M,alt + M, %;: + M;“x} em,

y= {M,blt i3 MA} e,

&ec. = &c.,
where M,, M, are two arbitrary constants which replace Z,, L.
In the same way if three roots are equal we have

¢ da d’a da
o= (a5 G+ 47+ 2, (a4 ) + M [ om,
£ b, . @, b ,
y= [M.(blé'l'd—fnlt'*‘* ) 1’)+M’(b"t+d—1;::) +M‘bl]9m‘-

This rule will be found convenient in practice to supply the
defect in the number of arbitrary constants produced by equal
roots. "At present we are only concerned with their effect on the
stability of the system. The terms which contain ¢ as a factor
will at first increase with ¢, but if m be negative, the term ¢nem™

can never be numerically greater than e%n . If m be very small
l .

‘
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the initial increase of the terms may make the values of 2 and y
become large, and the motion cannot be regarded as a small
" oscillation. But if the system be not so much disturbed that

—m
M. e:w} is large, the terms will ultimately disappear and the

metion may be regarded as stable. If, however, the real parts of
the equal roots are positive or zero, the terms will become large
and the motion will be unstable.

5. In some cases, however, the relations which exist between
the coefficients are such that the terms which contain ¢ as a factor
are all zero. - It is of some importance to discriminate these cases,
for the stability of the system is then unaffected by the presence
of equal roots.

Let us suppose first that the determinantal equation has two
roots only equal to m,, and let the terms depending on these be

z=(N,+ Nt) e,
* y= (N 1’ + N s/t) e,
&e. = &e.

Substituting in the equations of Art. (3) we have, following
the same notation as before,

AN,+BN;+CN,” +...=0

AN, +BN/+CON/+...=0} ceoouvrnnninn. L
&c.=0j
AN+ BN +..=- Sy 3By, 3
voem L n.
AN+ BN 4..==Ey By
&e. = &e. ‘

To avoid entering more minutely than is necessary into the
properties of linear equations, we shall assume that these equations
for the given value of m lead to but one solution with two of the
N’s arbitrary, unless the determinantal equation has more than
two roots equal to m,. If in this unique solution the N,’s are all
zero we must have )

AN, + BN/+...=0 ’
AN +BN/+..=0} .ooeenerinnies w1,
&c. =0
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Since two of the constants N, N/, &c. are to be arbitrary, let

them be N,, N,, then since ‘-Z‘-;r—‘ =5 We must have the minors a

”

and b each equal to zero. Also since % = 1—%‘-, we shall have N,”

infinite unless ¢=0. In the same way we may prove that all the
other first minors are zero.

And if the first minors are zero, we may show that two of the
equations may be deduced from the others. Let the symbol

‘l;j,g represent the second minor, with the usual sign, formed
y omitting the rows and columns in which 4B A’B’ occur.

Then since the minors a, b, ¢, &c. are zero, we have

4B . [ AB B
A[A, ]+A [A,,B,,]+...—o

4B JTABT e IV.
B’[A, ]+B [A,,B,,]+...=o '

~ Omitting the first line of IIL let us multiply the others by
[ j,B ] [ j'f}' ,:' &c., respectively. Adding the results, we have
an identity. Hence the second equation may be deduced from
the others which follow it. In the same way, the first equation
may be deduced from the others.

Rejecting the first two equations, let us transpose the arbitrary
constants N, and N, to the right-hand sides of the remaining
equations. I there are to be only two arbitrary constants, these
remaining equations must be independent; solving, we have

AB \on _ BC [4C
L] =-n[z5]+x[25)
with similar equations for the others. Hence the constants
N, N/, &c., are connected by equations of the form

BC ,T407 o .[4B7 .
5| pol -5 1]+ [ 2p] -0

so that when any two are chosen as the arbitrary ones, the others
may be deduced from them.

If the determinantal equation has three roots equal to m,, and
if the terms which contain ¢ as a factor are all zero, the equa-
tions III. must admit of a solution with three of the constants
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N,, N, &c. arbitrary. If these be N,, N,, N, we see that the
. BCl[ACTI[ 4AB
second minors must be zero.

BC 404
Next since
. BD 4D m| AB7 _
M pp] - ap] e 3 g ] -0
we must have g,g,] and [;;,D] both zero or N, infinite.

Hence all the second minors are zero. And if the second
minors are all zero, we have

A" ABC |+4"[ ABC 1+...=0,
ABC A'BC
A”Bl CII AIIIBII Clll
and by similar reasoning three equations may be deduced from
the remaining ones. We have then
N[ BCD |-N/[ ACD +M” ABD |-N/"I ABO |=0,
B'CD ACD A'BD A'B'C'
B'C'D 4"C"'D" A"B'D" A"B"C”
with similar equations.

Since f(m) is the determinant formed by eliminating N;, N/,
&c. from III. we have :

df(m) _df(m)dA . df(m)dB df (m) dA"
i = g dntaE am T T G

= dA+de+&c +a’ ﬂ+&c
@ am dm
This vanishes when a, b, &c., a’, &c. are all zero. If therefore the
first minors of f(m) all vanish when m = m,, the equation f (m) =

+ &e.

has two roots equal to m,. In the same way 7, Vanishes if all its
. first minors are zero. But

d’f (m) d’A da dA
“dm - %dm tam dm dm +&e.

vanishes if a, (%%, &ec. are all zero. If therefore the first and

second minors of f(m) all vanish when m =m,, the equation

.

r
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f(m) =0 has three roots equal to m,. It is evident the proposi-
tion may be extended to any number of roots.

The test that, when equal roots occur tn the determinantal equa-
tion, the terms in the values of x, y, &c. which contain t as a factor
should be absent may be stated thus. If there are two equal roots
all the first minors must vanish. If three equal roots, all the first
and second minors must vanish, and so on. In these cases the
equal roots introduce merely a corresponding indeterminateness
into the coefficients.

When there are more equal roots than there are rows in the
determinantal equation, it is easy to see that there must be some
terms in the integrals which contain ¢ as a factor.

[The following simple example will illustrate the application
of this test.

A particle is in equilibrium at the origin of co-ordinates under
the action of forces whose force function U is given by

U=} A2’ +} By’ + 4 O’ + Dyz + Ezx + Fry.

If the level surfaces are ellipsoids and the force acts inwards,
it is clear that the equilibrium of the particle must always be
stable. If then any equal roots occur in the determinantal
equation, the test should show that the terms which contain ¢ as
a factor are absent.

If T be the semi vis viva of the particle and if its mz;.ss be
taken as unity, we have

T=3a"+34y"+3%2"
Omitting accents and forming the discriminant of — m*T+ U
we have the following determinantal equation :
A-m* F E |=0.
F B-m' D
E D C-m

This is the “discriminating cubic” which determines the axes
of the quadric U=c, where ¢ is a constant. The conditions that
two of its roots should be equal, i.e. that the quadric should be .
a spheroid, are well known to be

EF_ . FD_, DE__,
A——.D——.B—T—C——F‘—mx,

where m? is equal to either root. These are just the conditions
obtained by equating any first minor of the determinant to zero.
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The conditions that three of the roots of the cubic should be
equal, i.e. that the quadric should be a sphere, are

A=B=0C, D=0, E=0, F=0.
These are the conditions that every second minor should vanish.

In this example we have taken the case of a-single particle.
Similar remarks however apply when any system of bodies is
disturbed from a state of stable equilibrium. The oscillations
may be found by the method of Lagrange. The final determi-
nantal equation may be conveniently formed by equating to zero
the discriminant of —m*7+ U, where 7 is the semi vis viva with
the accents denoting differentiations yith regard to the time
omitted, and U is the force function. ﬁi’s a known theorem that
the existence of finite equal roots does not affect the stability of
the equilib\rm@'r%'n’ce‘gﬁﬁconditions for equal roots must be
such as to maR¥ all the minors equal to zero. Conversely, this

theorem will often conveniently give the conditions that Lagrange’s
determinant has equal roots.]

6. That there should be a difference in the modes in which
equal roots affect the motion is no more than we should expect
a priori. Suppose the coefficients of the equation f(m)=0 to be
functions of some quantity n, and that as n passes through the
value n,, two roots become equal to each other. Let the quadratic
factor containing these roots be m®+2am + B8, and let us consider
only the case in which « and B are real. We have &’'—8=0
when n =n,. If a® — B change sign as n passes through the value
n, the roots will change from a trigonometrical to a purely ex-
ponential form, which would indicate a change from oscillatory to
non-oscillatory motion. The passage from one kind of motion to
the other may be effectéd through a motion represented by expres-
sions having the time as a factor. But if a"— 8 does not change
sign, for example, if it be a perfect square for all values of n, there

II:)ind of motion to the other,and in this
case we should expect that the motion when the roots are equal
will be represented by terms of the same character as before.
Briefly, we may expect equal roots to introduce terms with ¢ as a
factor at the boundary between stability and instability; and to
introduce merely an indeterminateness into the coefficients when
the motion is stable on both sides.

It is easy to show that in the first of these two cases the
minors could not contain either of the factors of m®+ 2am + 8.
For since o — B changes sign, these factors are in one case ima-
ginary; and therefore if one factor occur in any minor the other
must also be present. The minors would not only vanish, but
must have equal roots also. But as in Art. (3), A, f(m) =ab’ —a’d.
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Hence if all the first minors have equal roots it is clear that either
f(m) has more than two equal roots, or all the second minors must
vanish, The latter is impossible unless f(m) has more than two
equal roots.

These general considerations are not meant to replace the
proofs given in the last article, but merely to explain how a
difference in the effects of the equal roots might arise.

7. Summing up what precedes, we see that if a dynamical
system have n co-ordinates its stability depends on the nature of
the roots of a certain equation of the 2nth degree.

If the roots of this equation are all unequal, the motion will
be stable if the real roots and the real parts of the imaginary roots
- are all negative or zero, and unstable if any one is positive. If
several roots are equal the motion will be stable if the real parts
of those roots are negative and not very small, and unstable if
they are negative and small, zero, or any positive quantity. But
if, as often happens in dynamieal problems, the terms which con-
tain ¢ as a factor are absent from the solution, the condition of
stability is that the real roots and the real parts of the imaginary
roots of the subsidiary equation should be negative or zero.

8. 'When the equation £ (D) =0 is of low dimensions we may
solve it or otherwise determine the nature of its roots; the
stability or instability of the system will then become known.
But if the degree of the equation be considerable this is not a very
easy problem. We shall devote the two next Chapters to the
consideration of two methods by either of which, without solving
the equation, we can determine the conditions that the real roots
and the real parts of the imaginary roots should be all negative.
The determination of these conditions has, it appears, never before
been accomplished.* The consideration of the equations of motion
will then be resumed, and the form of the determinantal equation
J (D) =0 when the forces admit of a force function will be, more
particularly investigated.

* [These conditions for the cases of a biquadratic and a quintic had been found
by the Author in 1873, and read before the London Mathematical Society in June,
1874, See also the third edition of the Author’s Rigid Dynamics, Art. 436.]



CHAPTER IL

Statement of the theory by which the necessary and sufficient tests of
stability are found. Objections to this theory. Arts. 1—3.

These tests shown to be integral functions of the coefficients. Art, 4.

Method of finding these tests when the cogfficients of the equation are
numerical, or when several terms are absent. Arts. 5, 6.

All these tests shown to be derivable from one called the fundamental
term. Arts. 7, 8. :

The fundamental term found as an eliminant. Art. 9.

A method of finding the fundamental term by derivation from the funda-
mentod torws of one degree lower. Art. 10,

Another and better method of doing the same by means of a differential
equation. Arts. 11—13,

1. The object of this Chapter has been explained at the end
of Chapter I. Briefly, the criterion that the motion of a system
of bodies should be stable is that the roots of a certain equation
should have all their real parts negative. We propose to investi-
gate these conditions.

Let the equation to be considered be
S@=px"+pa™ + ... + po @+ p,=0.
Let the real roots be a,, a,... and the imaginary roots be
o tB V=1, a,+B,V—1, &e.
Then
f@=p, (z—a) (z—a)... ("~ 222+ a’+8), &

If then a,, a,, &c. a,, a,, &c. are all negative, every term in
each factor, and ti)erefore in the product, must be positive.

It is therefore necessary that every term in the equation
S (z)=0 should have the same sign. It will be convenient to
suppose this sign to be positive.
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It is also clear on the same suppositions that none of the
coefficients p,, p,, ... p, can be zero, except when the roots of the

equation are all of the form + B8y —1, or when some of the roots
are zero.

2. Let us now form the equation whose roots are the sums of
the roots of f(«) taken two and two. Let this be

F(zx)=FPa"+Pa™"'+...+ P, _xz+P,=0,

where m=n”—;—1. The real roots of this equation will be |

a,+a,, a, +a,, &c. 21, 2a,, &c. and the imaginary roots will be
a,+a,+8,¥/—1 &c. It is clear from the same reasoning as
before that if a,, a,, &e. a,, a,, &c. are all negative, the coefficients
P, P, &c. must all have the same sign.

Conversely, if p,, p,... have all the same sign, the equation
S (x) can have no real positive root, and if P,, P, ... P, have all
the same sign the eci::tion F(x) can have no positive root, and
therefore f(x) can have no imaginary root with its real part
positive.

8. Our first test tQ{;the stability of a dynamical system is that
all the coefficients of the dynamical equation f (D) =0 and all the
coefficients of its derived equation F (]2.)) =0 should have the same
sign.

It should be noticed that though these conditions are all
necessary and sufficient, they are not all independent. We obtain
too many conditions. In many cases, however, we can at once
reduce them to the proper number of independent conditions, and
when this is difficult we can have recourse to the second method,
to be given in the next Chapter, which is free from this objection.

In order to apply this method with success, it is necessary to

have some convenient methods of calculating the coefficients
P,P,..P, '

4. The first method which suggests itself is one similar to that
usually given to determine the coefficients of the equation whose
roots are the squares of the differences of the roots of any given
equation.

If 8, S,... be the sums of the first, second powers, &e. of the
roots of the equation fz =0, we have by Newton’s theorem

8,+p.8, ,+pS, +...=0,

where p, has been put equal to unity. If 3, =.... be the sums of
the powers of the equation F (z) =0, we have in the same way

2. +P3,  +P2 ,+..=0;

e ——
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- We may also prove

2 =(n-1)8,
Z,=(n-2)8,+8,
3,=(n—4) S+ 388,
2,=(mnm—-8)8,+488,+38},
3,=(n-16)8,+58,8,+108,8;;
and the general relation can be found without difficulty.
In this way we find
P, =(n-1)p,

F,= ("——11).(2"——2)10# (n—2)p,

P=(n—1) (n—2) (n—38)

[ 1.2.3 P1'+("—2).Plpg+(”-4)l7p
_(-1)(n—-2)(n—38)(n—4) ,, n—2'(n-38) ,
P== 1284 P15 Pn

+o-3ypp,+ 220D

.9 pn'+ (”—8)1’4'

But the process becomes longer and longer at every stage.
We shall therefore proceed to pomnt out some other methods of
obtaining the coefficients.

This method of proceeding has indeed been stated only because
it proves in a convenient way that when p, =1, all the coefficients
P, P, P,... of -the derived equation are integral rational func-
tions of the coefficients p,, p,... p,.

5. The equation f (x) =0 being given, to calculate the coefficients
of F (x) =0. i

Put 2=y + z and equate separately to zero the sums of the
even and odd powers of 2, we have _

@)+ @) “L—;+f"cy) £ om0
f'cv)z+f~'@)§+... ~0

Rejecting the root 2=0, let us eliminate 2. Then the roots
of the resulting equation in y are the arithmetic means of the
roots of f (x) = 0.
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If, on the other hand, we eliminate y we have an equation of
an even degree to find 2. This, putting 42*={¢ is the equation
whose roots are the squares of the differences of the roots of the
given equation. :

It may be thought that this elimination may prove tedious,
but it wiliybe presently shown that only the first and last terms of
the result are really wanted. All the others may be omitted in
the process of elimination, and thus the labour will be greatly
lessened. The method is however most useful when the given
equation has several of its terms absent.

6. Example. To determine the condition that the roots of the
biquadratic
x'+px’+qx’+rx+8=0
should indicate a stable motion.

Applying the rule we have
F (z) =2+ 3pa + (3p" + 29) o' + (4pg + p") #*
+ (20°q + pr + ¢* — 48) & + (pg* + p'r — 4ps) x + pgr —* — p’s.
The first four coefficients contain only positive terms, and need

not be considered. If the last three coefficients be called P, P,
P,, we have

PP —4F,= (pg—2r)" + 2p'q + p'r,
PF,—4F, = (pg — 2r)' + p'r.
If then F, is positive, all the other coefficients are positive.
The necessary and sufficient conditions of stability are there-
fore that p, g, , s should be finite and positive, and '
Fy=pgr—r'-p’s
positive or zero.

7. In forming the derived equation F(z) the only difficulty
is to form the last term P,. For when this is known the other
terms can be at once derived from it by an easy process.

Let a, b, c... be the roots of f(#)=0 with their signs changed,
and let

f(=) =p&" +p &+ + D..
Let A stand for the operation

d d d
A—aa-l'az-l-%-l-...
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Then since £* = b ... we have obviously
[
A &! p w-l
Do Do
In the same way we have
APt 9 Pucy
¥ y 2
And generally
Ap"'"'l —_ xpn—l
) Py Do
and so on up to
Al n

Let us now operate with A on any expression

& (Do Py -+ Pa)s

which has the same number of factors in every term. Let » be
thé number of factors, then ¢ may be written

¢ =po'¢1 (5:’ %;) ’
. [, 8 d
. Ad=p, {”‘Po E"' (n—1)p, dp, +oer

d d d
= {np‘,(—l—-+(n- l)P, ‘—z— + .. +p,,_l d—pT}¢.

Let P, P,... P_ be the coefficients of the derived equation
F(z), and et P =1. Then since the roots of F(z) are the sums
of the roots of f («) taken two and two, it is easy to see that

P, _ =3AP,
2P _,=3AP, _,
3Pw—3 = % A Pﬂ-ﬁ’

&e. = &e.

Thus when P, is known, the other terms may be calculated
without difficulty. The term P, will be called the fundamental -
term of the equation.

Ezample. Given in the case of a biquadratic

" P, =p,0,0y— PoPs — P Po
to calculate P,.
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Performing the operation

d d - d d
p’t_i[—)‘+2p’ a},""spn B;"" ‘1']’0(717. ’

on P, we find after division by 2,

Py=p.p,' + p,’p,— 4p.p,P0
which is the result already given.

8. It should be noticed that in the equation
f@) =pa" +pa™ +...+p, =0,

if we regard # as a number, pp, ... p, are all of equal dimensions.
It follows from the theory of dimensions, that if any subject of
operation be the sum of a number of terms of the form

p Oaplp.pﬂy’ b

there must be the same number of factors in every term. For
example, in every term of the expression for P, we have
a+ B+« &c. the same,

On the other hand, we may regard # as a quantity of one
dimension, and in this case p,p, ... p, have their dimensions in-
dicated by their suffixes. We must therefore have 8+42y+388+...
as well as a+ 8+ 9+ ... the same in every term.

These two tests of the correctness of our processes will be
found convenient.

9. The whole derived equation being known when the funda-
mental term is known, ¥ 18 required to find the fundamental term.

[First Method.]

If we write — « for # in any equation, we have a second equation
whose roots are equal and opposite to those of the first equation.
If we eliminate # between these two, we shall get a result which
must be zero when the two equations have a common root. The
eliminant must therefore contain as a factor the product of the
sums of the roots of the given equation taken two and two.

It will afterwards be shown that the last term P, of the

derived equation (when p, is put equal to unity) always contains
the term ’ .

Py Py Py
with a coefficient which is positive and equal to unity.
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Hence we have this l;ule, to find P, eliminate & between
@+ patpatt L = 0}
P +p a" L =0}’
and divide the result by the coefficient of p p,p,...p,_,.

It is obvious that the result may be written down as a
determinant. On trial, however, it will be found more convenient
to make the elimination by the method of eliminating the highest
and lowest terms than to expand the determinant.

10.  Given the fundamental term of the equation derived from

f@) =pa " +p 2" 4 oo 4 Dy =0urrrreeen. (),
to find the fundamental term of the equation derived from
PA DI AP @+ D=0 (@)
[Second Method.]

Let @, be the product of the sums, two and two, of the roots
of the equation (2) taken with their signs changed, so that @, is
the same as the fundamental term of the derived equation and
differs from P, only in having a suffix more convenient for our
present purpose.

Let Q, be expanded in a series of powers of p, : thus

Q= b+ b0+ ¢,P..’ + ...

where ¢,, ¢,, ¢,. &c., are all functions of p,, p,, &c., which functions
have to be found. Let the roots of f(x) =0 with their signs
changed be a, b, c..., then

Quy=(@+d)(a+c)...

Let us introduce a new root, which, when its sign is changed,
we shall call ». Then

Q.=(@+bd)(a+c)...(r+a)(r+d)...
= &l (po ! +Plr“—’ +... +pn-1)°
o
This value of @, must be the same as that given by the series

when we write

Po Pi+TPy Pytrpy &Cy potTPuy TPy
respectively, for p,, p,. p,, &c., p,_,, p,. Equating the coefficients
of the terms independent of » we have

¢Q=Q.ﬁ,%.
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Equating the terms containing the first power of » we have

d d d y
pn—x¢1+(po@; +P,?d;’+...+p..,d )¢°=Q P 3

Pa s " Py

Substituting for ¢, we have, by a known theorem in the Differential
Calculus,

d d d\ @,
= - - 5 e -5 "_‘-J .
é, (p.. dp,“’* ., + oot Puy dpﬁ_l) 7

Equating the terms containing the second power of » we have
1(,d a4
o {p i o g

d d "
+ (Po;];l +Prgz—,’+ ) ®, Py

+ ¢2p’u-1 = Qn-x 1;-’0-9 ’

and so on, Thus we have

P, d + d d \ Q.
=Qu P p (po Zdp, Z g 4 py ) Tt e,
Q.=Q., o P (po ap, TP dp.+ Pay de) D,

If we examine this process, we see that when Q,_, is known,
we may at once write down the terms independent of p, and the
coefficient of p,. The process to find the coefficient of p is
longer, but it may be much shortened by the consideration that
when p, =1 the result must be an integral function of the coeffi-
cients. We may therefore omit all terms as soon as they make
their appearance, which do not contain the factor p*, _,, for we
know that such terms must disappear from the result.

» This method is not so convenient as the one which will be
gresently given to find the coefficients of the higher powers of p_.
ut it is useful as showing that @, contains the term

PPy -Puy

n-1 .

D,

with a positive integral coefficient equal to unity. This will be
clear from the consideration that the term independent of p, in

Q, is obtained from @, , by multiplying by % If therefore Q, ,
(]

contains &27,.1)"—", @, must contain the term PiPePua N,

n-1
other term can be formed which is equal to this witﬁoan opposite
sign, for the terms which enter by the other processes to be per-
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formed on @, all contain p, as a factor. Now Q,= z 's therefore

@, contains the term I;')p *, @ contains Mﬂs and so on.

It has been shown that every term in p*"@, has the same
number of factors (Art. 8). It follows from this" reasoning that
this number of factors is n— 1.

11. To find the fundamental term of the derived equation by
means of a differential equation.

[Third Method.] :
The fundamental term required is a factor of the eliminant of

P+ p T+ = 0}
pa +pat T+ ... =0)"
Let o’ =y, then we have

-5 -1 3t _
NS _o}n sven,.
P;y, +P,]/a Forereiienens =0

n—1

e == _
poy'_l+ DY 4+ .............. = O} n odd.
P..’I +p.y Foeeriienienne. =0

If we write y + dy for y the result of the elimination must be
the same. Hence if we make

dp, dp‘ ) ]

2 = , =—1) »,,&ec.
dy 2p0 dy (2 B n even,
‘3;‘ ( —l)p., dp‘ (—— 2)p.,&c
dp, 1 .
d’;/ o Po ‘E‘ =z Pa’ &e. odd
dp, _n— 1 dp, 3 o[

dy 3 Do dy —2—p.,&c.

and if E be the eliminant, we have

It follows that whether n be even or odd, E must satisfy the
equation

[ ]

—2
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dE,  4E
pﬁ—ﬁ dp pﬂ-’ dp'-l
dE dE
(.pn—4 dgb’ + Pus d£E3)
B T J

We may make the ehmma.tlon by multlplymg the two equa-
tions by y, #°..., until we have as many equations as we have
powers to eliminate. If in the determinant thus formed, we
multiply out the terms in the diagonal joining the nght-hand top
corner to the left bottom c(zfner, we get when n is even p_* p:ﬂ

and when n is odd p“ p, . Now @, must contain n — 1 factors
and be of the n ™

and when # is odd E= c(,, where ¢ is some constant.

5 LT degree. Hence when n is even E=cp,Q,

Now (—ld— does not occur in the above differential equation.

Hence treatmg p, as a constant, we see that @, must satisfy the
differential equation

o 22 3 .82

AP, s
dQ.. dQ. _
&, + Puy ap + &c.=0.

+3 (p...

12. We may show that p," @, is a symmetrical function of the
coefficients p,, p,.. dp the same coefficients read backwards.
Let a, b, c.. be 'the roots of f(x) =0 with their signs changed,
then @, = (a +b) (a+c)...

If now we read the coefficients in the opposite order, the roots
of the equation thus formed will, when their signs are changed, be

11 If ¢, be the fundamental term of the equation derived

1
(LD (E4)...

from this, we have
= abe... we see that

po._l Qu = I’."l Q'n'

P _

Since
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We may therefore infer that p,""Q, also satisfies the differential
equation

dE d dE dE dE dE
(rugptrgy) *2 (P gyt 2e gy ) +3 (P g +p7dp)+&c -

13.  We may use either of these differential equatums to find
Q. when Q,_, 13 given.

Let the first differential equation be represented by

V=0,
and let
Qu=A4,+Ap,+A4.p}+...,
where 4,, 4,, ... are functions of p,, p,, &c. The value of 4, has
been proved in Art. 10 to be
4,=Q,,0=.
Quip

To find the other coefficients of the powers of p, substitute
this value of @, in the differential equation ; we have

0= VAo +P~VA1 +‘pﬂA1
+p.' V4, + 2p., a4,
+ &e.
Equating the several powers of p, to zero, we find

1

1
=——vd,,
PHV 0

1
2A’= _}')”_—;VAN

1
Memmpn v

- &e. = &e.

Thus by one regular and easy process each term may be
derived from the other.

In performing this process we may omit evel¥ term in the
subject of operation which does not contain p,,. For p, , can be

introduced only by performing dd ,and since p, is absent from the
coefficients, this operation yields nothmg
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In this way we find
S Qg =P
po’ Qa =P1Ds — PoPss
26’ Q.=DiPsPs —PoPs’ — Pi'Pos
2.9 =P DsPsPu— pops’pd - pl'p:
= s (= Popss + 2,05 — 2P,P,P)

2
+']%§(_ 2?0’ .

To illustrate this process, consider how @, is obtained from @Q,.
The first line is formed by multiplying the line above by p,, this
is A, To find the coefficient of — p, we operate with

(v 2:5) +2 (g 2)

on such of the terms in the line above as contain p, and then
divide by p,, Performing the same operation on the coefficient of

2
(—p,) we obviously obtain the coefficient of -1&—2 .

In M. Serret’s Cours d' Algébre Supérieure, Note IIL, there will
~ be found a method of forming the last term of the equation to the
squares of the differences, which suggested the method used in
Art. 13, of substituting in a differential equation, if only a differ-
ential equation could be found. [See also Dr Salmon’s Higher
Algebra, Arts. 60, 64, and 72.]



—e—

CHAPTER IIL

Statement of the theory by which the conditions of stability of a dynamical
system with n co-ordinates are made to depend on 2n conditions.
Arts. 1—4. ’ :

4 rule by which these conditions may be derived one from another, to-
gether with certain other true but not independent conditions. Arts.
5—8.

A rule by which, when the cosfficients of the dynamical equation are letters,
the 2n conditions of stability may be inferred, one from another,
without writing down any other conditions. Arts. 9, 10,

A method by which certain extraneous factors may be discovered and
omitted. Arts. 11, 12.

Consideration of the reserved case in which the dynamical equation has
equal and opposite roots. Arts, 13—18.

A few géometrical illustrations not necessary to the argument. Arts.
19—26.

Application to a Dynamical Problem. Art. 26.

. 1. It has been shown in the first Chapter that the stability of
a dynamical system with n co-ordinates oscillating about a state of
steady motion depends on the nature of the roots of a certain
equation of the 2n™ degree which we may call

 f@=0.
The system is stable if the real roots and the real parts of the

imaginary roots are all negative. Now Cauchy has given the fol-
lowing theorem of which we shall make some use.

Let z=z+y~ —1 be any root, and let us regard z and y as
co-ordinates of a point referred to rectangular axes. Substitute

for z and let .
f@)=P+@V-1

Let any point whose co-ordinates are such that P and @ both
vanish be called a radical point. Describe any contour, and let
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a point move round this contour in the positive direction and
notice how oftenA—Ij passes through the value zero and changes its

sign. Suppose it changes a times from + to — and B times from
—to +. Then Cauchy asserts that the number of radical points
within the contour is 4 (a —8). It is however necessary that no
radical point should lie on the contour.

2. Let us choose as our contour the infinite semicircle which
bounds space on the positive side of the axis of y. Let us first
travel from y=—o to y=+ o along the circumference.

L S @) =ps"+p2 + .o+ P
we have changing to polar co-ordinates

S (2)=p;" (cosnb +einnf vV —1) +..

}

Hence :
‘P=pg*cosnf+ pr*'cos (n—1)0+...
Q=pr sinnf+prsin(n—1)0+...)"

In the limit, since # is infinite,

g= cotnf;

g vanishes when nf= (2 +1) 7, i..

g is infinite when nf =2¢ 7, i.e.

o 2w 4w 6w
6=0, ia?z'g i'r_&i’ i;}—2-(B)

The values of 6 in series (B) it will be noticed separate those
in series (A).

When 6 is small and very little greatér than zero, L8 is posi-

tive, and therefore changes sign from + to — at every one of the
values of @ in series (A). If n be even there will be n changes
of sign. If n be odd there will be n—1 changes excluding

0=+ g , in this case g is positive when @ is a little less than Z,

™
o

and negative when 6 is a little greater than 3

iy ——ut DI
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Let us now travel along the axis of y still in the positive di-
rection, viz. from y=+o to y=—o0. Since =0 it will be
more convenient to use Cartesian co-ordinates, we have, since

f@) =‘po.4";“+'plz"'l +oiid Puy2+p0
and z=yN -1,
P=p,—p ¥+ Py~
Q =:'/(pn-1—ps-ay2 +..)
- '_P_ =P~ —pu-!?/’ +pn—4?/4_ et
Q Yy (pn-l_.pn—syg’l' “')

The condition that there should be no radical point within the
contour is that this expression should change sign through zero
from — to + as often as it before changed sign from + to — on
travelling round the semicircle. If n be even the numerator has
one more term than the denominator, and when p, and p, have

and

the same sign, P begins when y is very great by being negative.

In order that it should change sign through zero n times, it is
necessary and sufficient that both the equations

: y 2 _pn—e:‘/’ +pn—4.’/‘ —...=0,
Puny —pn-n:’/s +pn—s¢ —..=0,

should have their roots real, and that the roots of the latter should
separate the roots of the former. '

If » be odd, the numerator and denominator have the same
number of terms, and when p, and p, have the same sign, P begins

when y is very great by being positive. In order that it should
change sign through zero from — to + n — 1 times, it is necessary
and sufficient that the same two equations as before should
have their roots real, and that the roots of the former should
separate the roots of the latter.

In order then to express the necessary and sufficient conditions,
that £(2) =0 may have no radical point on the positive side of
the axis of y, put 2=y~ —1 and equate to zero separately the
real and imaginary parts. Of the two equations thus formed, the
roots of the one of lower dimensions must separate the roots of the
other. It 1s also mecessary that the coefficients of the two highest
powers of z in f (z) should have the same sign.

3. It has been stated that p, and p, the coefficients of the two
highest powers in f(z) must have the same sign. It is easy to see
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that, if they had opposite signs, QP would change sign through zero

2n times as we travel round the contour. All the radical points

of the equation would then lie on the positive instead of the .

negative side of the axis of y.

It has also been assumed that no radical point lies on the
contour. It has therefore been assumed that f(z) =0 has no root
of the form ¢=yV—1. It will be more convenient to consider
this exception a little further on.

4. It s required to expréss in an analytical form the conditions
that the roots of an equation f, (x) =0 may be all real, and may
separate the roots of another equation f, (x) = O of one degree higher
dsmensions.

To effect this, let us use Sturm’s theorem reversed. Perform
the process of finding the greatest common measure of f, (x) and

(z), changing the sign of each remainder as it is obtained. Let °

{ixe series of modified remainders thus obtained be f,(z), f, (=),
"&c. Then it may be shown that when any one of these functions
vanishes, the two on each side have opposite signs. It is also clear
that no two successive functions can vanish unless f; (<) and £, (2)
have a common factor. This exception will be considered pre-
sently.

Hence in passing from z=-—o to +© no variation of sign
can be lost except when f, (z) vanishes. If a yariation is lost it is

regained when « has the next greatest value which makes f, (z)_

vanish unless f, () =0 has a root between these two successive
roots of f,(z) =0. Hence this rule:—

The roots of the equations f,(x) =0, f,(x) =0, will be all real
and the roots of the latter will separate those of the former, if in

the series
f, (x), f,(x), f,(x)...

as many variations of sign are lost in passing from x=—o to
x=+ 00 as there are units in the degree of the equation f, (x) =0.

We have supposed the variations of sign to be lost instead of
gained in passing from £=—o to + . That this may be the
case the signs of the highest powers of f] (x) and £, (z) must be
the same.

These functions are alternately of an even and odd degree, the
condition that the whole number of variations of sign may be lost
in passing from x=-—o to 4o may be more conveniently ex-
pressed thus:—The coefficients of the highest powers of x in the

series
f,(x), f,(x), £,() ...
must all have the same sign.
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5. The process of finding the greatest common measure of
two algebraic expressions is usually rather long. We may in our
case shorten it materially by omitting the quotients and perform-
ing the division in the following manner. Let

Ji (@) =pa® —pa™? + pat— ...
fs (@) =p&™ —pa™" +pa™ - ...
then, since p, is positive, it easily follows by division that
fi(@)=Ada"— A'a" + A"2"" — ...

where 4 =P:1P;s — PoPs>
4'= D, Py — PoPss
&e. = &e.,

so that by remembering this simple cross-multiplication we may
write down the value of f, (x) without any other process than what
may be performed by stmple inspection. In the same way f, (),
&c. may all be written down.

6. Ex. 1. Express the conditions that the real roots and
real parts of the imaginary roots of the cubic

o +p2’+gr+r=0
may be all negative.
fl (a:)=a;’—gz,
f, (@) =pz* -,
S (@) =(pg—17) =,
Sfi@)=(pg-r)r.
The necessary conditions are that
p, pg—rand r
must all be positive.
Ex. 2. Express the corresponding conditions for the bi-

quadratic
zt+pa’ + g2’ +ra+s=0,

fi(z)=a — g2’ +s,
£ (@) =px’ - rx,
fi(@)=(pg—r) - ps,

f.(@)={(pg—1r)r—p's} =,
Sy (@) ={(pg —r) r—ps} ps.
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The conditions are that

p, pg—7, (pg—r)r—p'sand s
must be all positive.

These are evidently equivalent to the five conditions that

P97 8 (pg—r)r—p'
should be all positive.

In both these examples all the numerical work has been
exhibited.

7. Since the coefficients of the highest powers of # in £ () and
Ji(z) are p, and p, we see that the condition that p, and p, should
have the same sign is included in the general stutement that all
the coefficients of the highest powers should have the same sign.
If the function f(z) be of n dimensions we thus obtain n necessary
and sufficient conditions.

On examining these conditions in the cases of the cubic and
biquadratic it will be seen that they cannot be satisfied if any one
of the coefficients of the given equation should be negative.

8. Although the theorem in its present form gives n conditions
as the proper number for an equation of the n® degree, yet it is
important to notice that it gives other conditions also which are
true and may be useful. It has been shown in the second Chapter
that all the coefficients of the equation f(z) =0 must be positive,
hence the roots of f() =0 must all be positive. It may be shown
also, that the roots of each of the functions f(z), f, (), &c. are
separated by the roots of the function next below it in order.
Hence the roots of all these functions must be positive, and there-
fore in every one of the functions the coefficients of all the powers
must be alternately positive and negative and not one can
vanish. If however f,(z) and f,(x) have one or more common
factors some of the functions f,(#), f,(#), &c. will Wholly vanish.

9. When the degree of the equation is very considerable
there is some labour in the application of the rule given in Art. 5.
The objection is that we only want the terms in the first column,
and to obtain these we have to write down all the other columns.
We shall now investigate a method of obtaining each term in the
Jirst column from the one above it without the necessity of writing
down any expression except the one required.

‘We notice that each function is obtained from the one above it
by the same process. Now '

Ji(@) =pa" —pa"t + pat— ...
f;(x) = pxw“-l —ps‘z”—s +p5 " -
Js@) =@, —pp) 2" — (p.p. — pop) et + ...




IIL.) . DERIVED ONE FROM ANOTHER. 29

The first and second lines will be changed into the second and
third lines by writing for

P Py Py Py &
the values .
Py PP—PPy Py PP~ PPy &C
If then in any term of any function we make these changes, we
obtain the corresponding term of the function next in order.
10. Example. Express the conditions of stability for the
quintic
J@) =pa +pa' +pa +pa+pT+ Py
‘We have
fl(w) =pa + ...
fi@=pa+...
Jo@) = (0.2, __pops) '
f;(x) = {(pxpe_popa)ps iy 2 (pnpl _pops)}‘””
Jo@) =[{(2.Ps = PuPIPs — P, (2,2 — PP} (PiPs— PoPs) :
- (plpa —popa)' Pa] x,
Ji(@) =[{(P:ps = 2Py = P, (PP~ PoPD} (PP = Pop)
— (2P = Pop)” - Pl (2.0 — P0) Py

11. On examining the conditions as given in the cases of a
biquadratic and quintic it will be apparent that several contain
the previous conditions as factors. Thus the analytical expressions
are rendered much longer than is necessary. It 18 now proposed
to 1nvestigate a method of discovering and omitting these extraneous
Jactors as they occur, and thus obtaining the required conditions vn
their simplest forms.

Let the coefficients of the several powers of 2 in the functions
be when taken positively

j;(w) = Po y 2 Yy Ds -

fi@=pp  Pe  Pe P

fi@=4, A, A", A4A"..

fiz=B, B, B, B"..
&e. = &e.



30 EXTRANEOUS FACTORS [cHAP.

Let us first find which of these terms contain p, as a factor.
Putting p, =0 and using the rule in Art. 5, the series become

Do> Do Do DPer

0, Dy Pss Po
—PoPsy  ~ PoPss = PP = PoDs>
—PPsr —PoPsPs  —PoPsPr»  —PoPsDss

0, 0, 0, 0,
0, 0, 0, 0,
&e.

Hence the C’s and D's all vanish and therefore contain p, as
a factor. By the rule in Art. 5, the E’s contain p’, the F”s con-
tain p°, the G's p’, the H’s p’, and so on.

But since each line is formed from the preceding by a uniform
rule, it follows that the D’s and E’s contain 4 as a factor, the
F’s contain 4°* the @’s contain A4° the H’s contain A° and so on.

The factor 4 in the D’s and E’s has its origin in the factor p,
which occurs in the C’s and D's and would not appear if that
factor had been omitted when the C’s and J’s were formed. The
factor 4 in the D’s and E’s in the same way gives rise to the
factor B in the E's and F’s. So that if we take care each time
we perform the process described in Art. 9 to omit the common
factor p, whenever it occurs, all these subsequent factors will never
make their appearance.

We shall now show that if these factors are omitted, the
dimensions of the ™ function £, () will be n f—;—l . First consider
the actual dimensions of each function before the factors are
omitted. If we examine the rule by which each function is
derived from the preceding, it will become evident that, the
dimensions of each letter being indicated by its suffix, the
dimensions of any function are equal to the sum of the two pre-
ceding + 2.

In the following table the first column indicates the function.
In the second column will be found the dimensions of the leading
coefficient of that function when calculated by the rule in Art. 5.
In the third column will be found the dimensions as given by the
formula nﬁ—;-l. In the remaining columns are the dimensions

of the extraneous factors p,, 4, B, &c. introduced into each term.
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fi@ 0 0
fil@ 1 1
Silz) 8 3
fi(z) 6 6
fil@ 11 10 1
fi@ 19 13 1 3
fil) 32 21 2 3 6
fi@ 53 28 3 6 6 10
fiz) 8 36 5 9 12 10 15

&e. &e. &e. & &, &e.  &e.  &e.  &e.

Each term in the second column is the sum of the two terms
just above it +2. The n™ term in the third column is equal to
the term just above it + (n —1). In all the other columns each
term is the sum of the two terms just above it. The last term in
the n™ row is equal to the (n—3)*® term in the third column.
We wish to show that any term in the second column is equal to
the sum of all the terms in the same row to the right of that term.
It is not difficult to show from the data just given that if this be
true for any two adjacent rows, it is true for all the others, and
hence we may assume it to be always true.

It is clear that these extraneous factors may be omitted since
by the conditions already expressed they are all positive. When
omitted as they occur, the dimensions of the n™ function has just
n—1

2
thus reduced must contain the terms

Pv  PPs  PPDe PiPaPiPe &
Now if we take any one of these as

O N N Y 1),
and operate by the rule in Art. 9, we have

(P,Ps = PP Py (P,Ps = Pos) Ps (P15 = PoP2) Py
which contains the term

PPy DuP D PP DDy oo oeevrsrassnearanss 2).

Thus we have p, introduced as often as there is a factor in (1)
with an odd suffix. But it should be introduced only once. These
extra p’s are the extraneous factors to be omitted. Each of these,
if left, would appear as the factor p,p, — p,p, in the next condition,
and be still more complicated in the next after that.

been shown to be n

It is easy to see that the conditions




-

b

e

32 EXTRANEOUS FACTORS DISCOVERED. [cHAP.

In order then to obtain the several conditions in their simplest
form it is only necessary after performing the operation described in
Art. 5 or Art. 9 to divide by p*, where « i3 one less than the number
of factors with odd suffizes in the condition operated on.

12. Example. Express the conditions of stability for the

sextic
S @) =pa*+pa’ +pat+p2+pa +p+ py= 0.

We have
S (@) =pa’+ ...
Sfo@=pa+...
fs (w) = (Pll’n-PoPs) z'+ ...
fl (w) = (pl.psps - pops’ - P:Pd +p0p1pb) 2+ ...

(@) = (DD P~ PP, P~ PP+ 2PoD, Pis — PoPS s + DoPyPaPs

—P0 Dy + D, D3 Ps — PP, PyPe} &+ -
Jo (@) = [P,PuPsDsPs — PoPs 2 Ps — PP Ds+ 2000, P D5 — D, P Ds’
+ PoPyPsDs' = Po' Ps + 2D, DyDsPs — 3DoP, Dy PsPs — P, D Py Po
+ oDy Do+ Py PsPiPs — P,'Ps'] @ + &ic.
J, (2) = coefficient of  in f; X by p,.

13. In the preceding theory two reservations have been made.

1. In applying Cauchy’s theorem it has been assumed that
there were no radical points on the axis of y.

2. It has been assumed that P and @ have no common
factor, so that none of the functions f,, f,, &c. vanish absolutely.

If any radical point lie on the axis of y, it is clear that f(z) =0
must have a.factor of the form (2* + @)". Let f(2) =(2"+ a”)" ¢(2).
In this case when we put z =y+ —1, we have

f@) =@ =y (P + @V -1);
oo P= (a’—y’)'P’}
Q=@ -yrel

Thus P and @ have a common factor, and we are warned of the
possible existence of radical points on the contour by the total
vanishing of some one of the functions f,, £, f;, &c.

The two reserved cases may therefore be included in one. If
f(2)=0 be the equation furnished by dynamical considerations,
we form the functions f,, f,, f,, &c. If all these be finite, the

question of the stability of the system has been answered. If any
one vanish absolutely, f, () and f,(x) have a common measure,
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and we must add some further considerations. It will be con-
venient to examine separately the dynamical effect of the- roots
which do not and which do enter through the greatest common
measure. Let us begin with the former.

14. Following the same notation as before, we have

f(‘) =poz.+pnzn-l+ eoe FPuy® + Puy

P=1f,(9) =Pu=Pusy’ + -ereee }
Q=2 , (W) =Puy—Puy +..

If then f (z) have two roots, viz. +(h + &~ — 1), which are equal
and opposite, then f, (y) and f, (y) must have two common roots,
viz. + h+kV =1

V-1 . ,
f.(y) contains all the roots of f(y¥ —1) which are equal and
opposite. Conversely the greatest common measure of P and Q is
necessarily an even function of y, and if it be equated to zero, its
roots are necessarily equal and opposite. These roots must also

satisfy £ (y¥ —1)=0.

Let this greatest common measure be 4 (3*) =0, and let ™ be
the highest power which enters into it. Also let

F@)=¥(=2) ¢ (),
then ¢ (2) is a function which, as has just been shown, has not got

two roots equal and opposite, and to this function we may apply
Cauchy’s theorem without fear of failure. Putting 2=y~ —1, let

¢ =P+Q V-1

The common measure therefore of f, (y) and

Then we wish to express the condition that g, should change

sign from — to + through %ero n —2r times if n be even and
- n—2r—1 times if n be odd. But

flyV=1)=P+QV=1,
and FEV=D) =9 ) (P +Q V=)

. P=y(y)
=y el

Thus the number of changes of sign in !(7, is exactly the same

as that of % The factor ¥ (y*) will run through all the functions

L. @), £, (%), &c. obtained from £, (y) by a process which is equiva-
lent to that of finding the greatest common measure of f, (y) and

R. A, 3
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f. (). The changes of sign of this factor will therefore not affect
the number of variations of sign in the series f,, f,, f,, &

The last factor which is not zero is f,,, ,. (¥) if # be the dimen-
sions of £, (y). ,

Hence if we omit the considerations of the vanishing factors and
apply the same rule as before to the n + 1 — 2r remaining factors, we
can express the condition that the proper number of changes of sign
Jrom — to + have been lost through zero in the function ¢ (z),i.e. that
the roots not gwen by the vanishing of f,,, .. are all of the character
to ensure stability.

15. Let us next consider the effect on stability of the roots
indicated by the absolute vanishing of one of the subsidiary func-
tions, This function must be of the form

VvO)=¢y" -y 7"+,

where n is even. The corresponding factor of f(2) is
F(2) =g, + ¢+ g g +.-..

The roots of this equation are two and two equal with opposite
signs, it is therefore necessary for stability that no root should
have any real part. To express this condition, draw a straight
line parallel to the axis of y at an indefinitely short distance from
it, viz. z =h. Let us apply, in the same manner as before, Cauchy’s
theorem to the contour formed by this straight line and the infinite
semicircle on its positive side. Putting z=~h + 2’, we have

F(2) = qu + 29,12’ + q._2" + 49, _he" + ...
The two functions are therefore, omitting the positive factor A,
P=g,—gns¥' + 00y — &,
Q=299 44,-y" + &e.

Now f, (y) and f, (y) are what P and @ become-when arranged
in descending powers of y and the coefficients of their highest
powers made to have the same sign. Hence

_Y®)
L=,
The rule described in Art. 4 will now become the same as
that usually called Sturm’s theorem. We are to seek the greatest
common measure of f; (y) and its differential coefficient, and make

the coefficients of the highest powers of y in these two and in the
series of modified remainders all positive.
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That we should have been led to Sturm’s theorem in this case
is just what we might have expected. For to express the condi-
tions that the roots of

F(2)=¢,+ qus?’ + qui' + ...

are all of the form + 7+ =1 is the same thing as to express the
conditions that the roots of

9=+ g, 8 — ... =0
are all real.

16. There is however another mode of proceeding. Suppose
we have calculated the functions f;, f;, &c. for the general equa-

tion
f@)=ps"+ps"+...

and find when the values of p,, p,, &c. are substituted that some
one function say f, of the series absolutely vanishes, and therefore
also all the functions which follow it. Then operate on each of
these vanishing functions with

d d d
P g+ 210...(117”_:'* 3?-.@“'

repeating the operation until we obtain a result which is not zero.
If we now replace these vanishing functions by these results we
may ag(fly the rule of Art. 4, just as if these were the functions
supplied by the process of the greatest common measure. As this

Pprocess is not so convenient a8 that already given it is unnecessary
to consider it in detail®. :

. 17. As a numerical example, let us examine whether the roots
o

f@)=a*+ 20"+ 42® + 42° + 62* + 62° + 7' + 4 +2=0

satisfy the conditions of stability. In order to show the working
of the method it will be necessary to exhibit all the numerical
calculations. We have by Art. 5,

* The function f, (z) vanishes because the equation f(z)=0 has two roots equal
and opposite. If we put z=¢ + h, where h is as small as we please, this'peculiarity
will disappear. Thus if the values of z are of the form (a2g /1) the corre-
sponding values of 2’ are —h+axf8./—1. These values of £ will indicate stabili
if a be zero and instability if « have any value positive or negative. If h be as sm
as we please and positive, the values of 2’ will indicate stability or instability under
the same circumstances. We may therefore apply the rule of Art. 4 to the fune-
tion f (¢ + k) instead of f(z), provided we retain only the lowest powers of h which
occur. Hence all the funetions f, (), f, (2)...f.1(%) which do not vanish are
unaltered. To find what function will repfa.oe Jr (z} we must increase by A all the
roots of f(z)=0 when their signs have been changed. This may be effected by
performing on f (z) the operation represented by A in Art. 7. The rule in the text
therefore follows from the one given in that article.

3—2
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J, (@) =" — 4a° + 62* — T2’ + 2,
[, (@) = 22" — 4o + 62 — 4,

Jo (@) = 4a® — 6a* + 102° — 4,
fi(2) = 4" — 4o’ + 8a;,

J: (z) =8a" — 82"+ 16.

Here we find £, () to be absolutely zero, accordingly by Art. 15
we replaoe it by the differential coefficient of f, («), this being
Sturm’s rule. We have therefore

i (@) =8 (4a° - 22),
f,(z) =8 (24" - 6),
fi(2)=-8.20.z,
J, (@) =—8.120.
We see that the two last of the coefficients of the highest
wers are negative. The roots therefore do not satisfy the con-
itions of stability.
As another example, take the equation
@=z_‘+w‘+ 62* + 54" + 112" + 62 + 6.
Here
Jfi (@) =a*- 6z + 11x* — 6,
Js (@) =2 — b2* + 6w,
S (@) =a'— ba"+ 6,
£(@)=0.
Replacing f, () by the differential coefficient of £, (), we have

Ji(@)=42" - 10z,
Ji () =10a" — 24,
Jo (2) =4,
So(x)=4.24.

Here all the coefficients of the highest lElower:s are positive,
hence the roots satisfy the conditions of stability.

It is clear that when the coefficients are numerical the rule
given in Art. 5 is the most convenient, but when the coefficients
are letters, the rule in Art. 9 will be found preferable.

The process would be simplified by omitting the alternate posi-
tive and negative signs of the terms in each line.
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18. It may be interesting fo ewpress the two subsidiary func-

tions f, (x) and f, (x) ¢n terms of the roots of the given equation.

Let a,,a,, a,...a, be the roots of the given equation f(z) =0, 80

that
f(@)=(z—a,)(z—a)(z-a)...
=a"+pa*+paT+ ...
Then it is evident that )
tf, @V =1)=2"+pa™ +pa™+...
» =* (‘”+a1) (w+an) vee % (w_al) (w-aj) e
It may be shown* that

tf, @V =1)=pa"+pa™+ ...
__s(@+a) (@+a). . (a+a)
(a,—a,) (a,~a,) ... (¢, —a,)

19. The following propositions are not necessary to the main
ment, but as they illustrate geometrically the propositions in

this chapter it has been considered proper to state them very
briefly. The demonstrations will therefore be much curtailed.

The equation being
f@=ps" +ps " +... +p, 2 +p. =0,

we put as in Art. 1, 2=x 4+ y+/—1, and thus obtain two curves
whose equations expressed in polar co-ordinates are :

P=py"cosnf+pr**cos(n—1)0+...=
Q=p,"sinnd +pr**sin(n—1)0 +...=0J *
These intersect in the radical points of the equation f (z) =0.

a(x—-a)...(r—a).

20. If we trace these curves we find that the curve P=0
has n agsymptotes whose directions are given by cos nf = 0, t.e.
g=17 387 b=
w2’ w2’ a2’
* Let us assume
DAV 4 pat i+ &e. =4, (£ - ay)...(2 - a,) + 44 (x—-a))...(2 - a,) + &o.,
where 4,, 4,, &c. are constants whose values have to be found. Putting z=a,,
we have D 14 pga, "B+ &o.= A, (a, - ay)...( - ay).
Bat since B+ Pt =(2~a)) (—ay)...(x - ay),
wo have by pulting z=a, and 2= -aq,
ot +p0" 4. =0,
4" =010, 1+ ... =20, (4, +ay)... (0, +a,)-

Subtracting the second of these results from thie first we find 4, to have the value
given in the text.
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These asymptotes all pass thiough the same point on the axis
of z, viz. 2=~ "ﬁ‘— . It is also clear that only one branch of the

(]
curve can go to ga,ch end of an asymptote. Similar remarks apply
to the curve @ =0, the directions of its asymptotes being given by
sinnd =0, i.e.
2w 4w 67
n2’ n2’ 22777

21. From these simple propositions we might, if it were
worth while, deduce that every equation must have a root. The
asymptotes of the two curves P =0, Q=0 are alternate, and no
two branches of the same curve can approach the same end of an
asymptote. By sketching a figure, it may be easily shown that
some branch of the P curve must cut some branch of the @ curve. -

0=0,

22, - Let us next consider the intersections of the curves P =0,
Q=0.

If we transform the origin to b, k, we put z=h +§ y=k+1.
This is the same as expa.ndinga{(h +kV-1+E+94¥—1), and
collecting into two parcels the real and imaginary terms. Let the
expansion be

A+ A (E+aV =)+ 4, (E+aV=1)"+...
where 4,4,... are of the form
¢ (cosa+sina ¥ —1).

If we put £ + 9V —1 =7 (cos 6 + sin § ¥ — 1), we have
P=c°cosa,+clroos(8+al)+c,r’cos(20+a,)+...}
Q@=c,sina,+ ¢, sin (0 +a,) + ¢ r*sin (20 +a) +...) °

If the point (h, k) be a point of intersection ¢,=0. If the inter-
section be a double point on either curve, the terms of the first
degree must be zero, therefore ¢, =0, and the origin is therefore
a double point on the other curve also.

It is not difficult to show that if the intersection be a multiple
point of any degree of multiplicity on one curve, it is a point of
the same degree of multiplicity on the other curve. The tangents
to these branches all make equal angles with each other, the
tangents to the P and @ curves being alternate as we travel round
the point of intersection, If the intersection be not a multiple
point on either curve, the branches cut at right angles.

Let us travel round a point of intersection along the circum-
ference of a small circle whose centre is the point of intersection
in the direction in which @ is measured. Then it may be shown
that as we pass from a P curve to a  curve, P and Q have
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opposite signs, and as we pass from a @ curve to a P curve the same
sign. This is in fact merely Cauchy’s rule for the changes of sign

of % when we travel round a radical point.

23. Let us express the condition that there is no radical point
on the positive side of the axis of y. This is the geometrical
illustration of Art. 2.

Draw a circle of infinite radius, and let it cut the asymptotes
of the P curve in P, P,, P,,...P, and the asymptotes of the
-Q curve in Q,, Q,,...Q,,. These points alternate with each other.
Taking only those points which lie on the positive side of the
axis of y, the P and @ curves may be said to begin at these points
and are to intersect each other only on the negative side of the
axis of y. The branches of the two curves must therefore remain
alternate with each other throughout the space on the positive
side of the axis of y. Their points of intersection with the axis
of y must be also alternate, and hence if we put =0, in the
equations P=0, =0, and regard them as equations to find y
the roots of each must separate the roots of the other.

Conversely, we may show that if the intersections of the two
branches are alternate on the axis of y, they cannot have intersected
on that side of the axis of ¥ on whic{ the common intersection of
all the asymptotes is not. This is the result arrived at in Art. 2.

24, The following diagrams exhibit the forms of the curve
P=0, Q=0 for a biquadratic. The dotted lines represent the
. asymptotes.

A biquadratic with four imaginary roots.
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o

A biquadratic with equal xmagmary roots.
25. [If e=x+y~ -1, we have

fle)=P+ Q¥ 1.
Differentiating with respect, firstly to = and secondly to y, we

find Fo=2, %8y

fo=32-2=

Y

. dP _dQ .dQ dP,
It easily follows that &= dy and = "dy’ so that both

the functions P and @ satisfy the equation
oy, &V
ay' ' da’ :
The equation f(zi) =0 gave us tWo curves which we have calle
P=0and @=0. In the same wa{: the derived equation f7(2) =0

will give us two other curves, which we may represent by P =0
and Q'=0. These we may call the derived P and Q curves.

N If asin Art. 22 we transform the origin to the point (h, k) we
ave

P’ =¢, cos a, + 2¢;r cos (0 + a,) + 3¢, cos (20 +.a,) +...
Q =c,sina +2¢;r sin (0 + a;) + Sc* sin (20 + @) + ...

If the origin be at a point of intersection of the curves P=0,
P’ =0 which is not a double point on the first of these curves, we

=0.
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have ¢,co8 @,=0 and cosa,=0. Hence the tangent to the curve
P=0 at the point of intersection is parallel to the axis of .
Conversely if we move the origin to any point on the curve P=0
at which the tangent is parallel to the axis of x, we find that the
curve P’ =0 passes through the origin. Hence the derived P
curve passes through all those points on the curve P =0 at which
the tangent is parallel to the axis of @, and all those points on the
curve =0 at which the tangent is parallel to the axis of y. In
the same way the derived @ curve passes through those points on
the curve @ =0 at which the tangent is parallel to the axis of z,
and -those points on the curve P=0 at which the tangent is
parallel to the axis of . .

If ¢,cosa,= 0, and ¢, =0, the origin is a double point on the
curve P=0 and the origin also lies on both the curves P’'=0,
¢'=0. So that both the derived curves cut the curves P =0 and
@ =0 in their double points. In other words, these double points
are radical points for the derived equation f'(z) =0. In the same
way, any multiple point on either curve is a multiple point of one
degree less multiplicity on both the derived curves. -

If a finite straight line AB be drawn parallel to the axis of
joining two points 4, B on the same or on different branches of
the curve P=0, this finite straight line must cut one or more
branches of the derived P curve. For it is clear that if P vanishes

at 4 and B, P which is equal to %cannot keep one sign between

A and B, and must therefore vanish somewhere between 4 and, B.
If 4 and B be adjacent points, ¢.e. if there be no other points
between A and B belonging to the curve P =0, then the straight
line 4B must cut an odd number of branches of the derive§ P
curve. In the same way if a straight line CD be drawn el
to the axis of y joining two adjacent points on a derived ¢ curve,
this straight line must also cut an odd number of branches of a

derived P curve between C and D.

By considering a tangent as the limit of secant, it again follows
that if a tangent be drawn to the curve P =0 parallel to the axis
of o, the derived P curve must pass through the point of contact.

Let B be a radical point on the derived curve f"(2) = 0, and let
it not be a double point on either of the curves P=0, @=0. Let
a straight line be drawn from R in any direction cuttit:f the
branches of either of the curves P=0, @ =0 in the points 4,, 4,,
&c. Then we may show that

1 1
B4, R4,
so that the polar line of R with regard to either of the curves
P =0, Q=0 is at infinity.

1
+:_R_Z+&c'—0,
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The positions of the radical points of the derived equation
S (2) = O relatively to any branch or branches of the curves P=0,
Q=0 may be found by the use of Cauchy’s theorem. If the
point spoken of in Art. 1 travel along a branch of the curve P=0,

dx

curve =0 we have g= —%. If then any contour be partly

bounded by branches of these curves, the simplest inspection of
the points at which the tangents are parallel to the axis will

determine the 'cha.nges of sign of %’ as it passes through zero.

it is easy to see that %= dy . If it travel along a branch of the

If another part of the contour be an arc of a circle of infinite radius
whose centre is the origin, the changes of sign through zero will
be from + to — and their number will be indicated by the number
of asymptotes of the derived P curve which cut the arc.}

26. The use of Watt's Governor in the steam engine is too
well known to need description. It has however, as commonly
used, a great defect. It is sometimes of importance that the
engine should continue to work at the same rate notwithstanding

eat changes in the resistances. Suppose the load suddenly

iminished, the engine works quicker, the balls diverging cut off
the steam, and the engine, after a time, again works uniformly,
but at a different rate from before. The balls as they open out
or close in are usually made to describe circles. Let them now be
constrained to describe some other curve which we may afterwards
choose s0 as to correct the above defect. 1f this curve be a parabola
and the balls be treated as particles, it is clear from very elemen-
tary considerations that these will be in relative equilibrium only
when the engine works at a given rate. This principle is due
to Huyghens, see Astronomical Notices, December, 1875. It is
now proposed to determine the condition of stable oscillation about
a state of steady motion.

Two equal rods 4B, AB are attached at 4 by hinges to a
small ring which can slide smoothly along a vertical axis. The
ring is attached by a rod to the valve and can thus govern the
amount of steam admitted. Two equal balls are attached at B
and B, and the centre of gravity G of the rod 4B and the ball B
is constrained to describe some curve. To represent the inertia of
the engine we shall suppose a horizontal fly-wheel attached to the
vertical axis whose moment of inertia about the axisis I. Let the
‘excess of the action of the steam over the resistance of the load
be represented by some couple whose moment about the vertical
axis 1s f(6), where @ is the inclination of the rod AG to the
vertical, and f is a function which depends on the construction of
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the engine. Since the steam is cut off when the balls open out,

it is clear that f ( 9); is negative.

There may be also some resistances which vary with the
velocity. Let these be represented by a couple B df tending to
retard the motion round the vertical axis and a couple round 4 in
the plane BAB equal to mC fl_f’ where ¢ is the angle the

vertical plane BAB makes with a fixed vertical plane.

Let m be the mass of either sphere and rod; k the radius of
tion about an axis through G perpendicular to the rod, and &

" - that about the rod, let /=A4G. Then the equation of angular

momentum gives

~dt{IZf+2m(k’+l‘sm’0+k"cos’0)%%}éf(ﬂ)—B‘g—’.

Let the steady motion be given by 6 =a, ?g =n, and let the

oscillations be represented by 8 = a + «, ‘f—? =n+y. We have then

F(0)=f@)+f(a) 2,
J(a)=Bn.

The equation then reduces to

{I + 2m (K + P sin® a + k™ cos® a)} %—z + 2m (I’ + k* — k*)sin 2an %

- =f"(a)x— By.
This equation may be briefly written
dy dx

421 By+ BS + Fe=0.

Let z be the altitude of @ above some fixed horizontal plane.
Then if 7' be the semi vis viva

2T'= 1§ + 2m {(* + I sin®d + k* cos"6} &+ 2mk*6”

dz 16 gn
+2m{(55)+ 2 o o e

If U be the force function, omitting the couple of resistance,
we have U=—2mgz. The virtual moment of the couples of

resistance being 2m (680, the Lagrangian equation of motion

becomes
dadl _dT_dU_, g,

dtdd do do
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Substituting for T'and U we have when the motion is steady

dz

]
%(P+Ic’—k")sin0t=os€=@,

n* .
% (P+E -k sin'0 =2
Since Isin @ is the distance of @ from the vertical axis, we see ‘
that the path of @ must be a parabola. The semi latus rectum is
e
(P + -k’

which, we notice, is independent of the radius of the balls. The
length of this latus rectum must of course be adjusted to suit the
particular rate at which the engine is intended to work.

‘When the system is oscillating about the state of steady motion
we have, putting

4
a’=l’+% (@ + ¥ — k") sin* o,
and rejecting the squares of # and y,
y d’ dz .
%+ a’cos'a)m,a-’+ 0717— O+ % — k") sin 2any = 0.

The term , it will be noticed, has disappeared from the
equation, This equation may be briefly written in the form

dz  _dz
H Fr R C'a'l? —Ly=0.
Eliminating y from the equations of motion we have

Pz o BT dx
AHE. +(4C+ BH) Tt""(BC"' EL)E+FL:»=0.

The coefficients are all positive, the necessary and sufficient
condition of stability is therefore
(A4C+ BH)(BC+ EL)> AFHL.

In some clocks to which Watt’s Governor is applied, there is a
special arrangement which causes C to be much greater than B.
See the Astronomical Notes, x1,, 1851, and the Memotirs of the
Astronomical Society, Vol. XX. Neglecting therefore B, we have

CE > FH.
.o 20ma (P + ¥ = k™) sin 22> F(&* + a* cos' a).



CHAPTER 1IV.

Formation of the equations of steady motion and of small oscillation
where Lagrange's method may be used. Arts. 1—5.

The equations being all linear the conditions of stability are expressed
by the character of the roots of a determinantal equation of an even order.
Art. 6.

Mode of expanding the determinant. Art. 7.

A method of finding the proper co-ordinates to make the coefficients of
the Lagrangian function constant. Arts. 8—10.

How the Harmonic oscillations about steady motion differ from those
about a position of equilibrium. The forces which cause the difference are
of the ‘nature of centrifugal forces produced by an imaginary rotation
about a fixed straight line. Arts. 11—19,

Reduction of the fundamental determinant to one of fewer rows by the
elimination of all co-ordinates which do not appear except as differential
coefficients in the Lagrangian function; with an example. Arts. 20—23.

Formation of the equations of Motion and of the determinant when
the geometrical equations contain differential coefficients, so that Lagrange's
method cannot be used ; with an example. Arts. 24—27.,

1. Let the system be referred to any co-ordinates £, #, § &c.
The general expression for the kinetic energy is

T=%3PE"+QEn +...

where P, @, &c. are known functions of £, 9, & &c. and accents
have their usual meaning. Let us suppose the system to have
some motion represented by :

E=f@®), n=F@), &

and when disturbed, we wish to find the oscillations about this
motion, To effect this, we put

E=f(+0, n=F@O)+4 &

4
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where 6, ¢, &c. are all small quantities. Substituting and expand-
ing T in powers of 6, ¢, &c., we find

T=T,+A40+A4,¢+...
+B6 +Bg +...
+3 (A0 +24 00 +...)
+3 (B0 +2BI¢ +...)
+C,00 +C 0" + C,.0¢+ ...
+ &e.
In the same way we may make an expansion for the Potential
Energy of the forces, viz. .
V=E+EO0+Ed+...
+4 (B0 +2E 604 +...),
when these two functions are given the whole dynamical system

and the forces are known; and we may form the equations of
motion by Lagrange’s method.

2. We shall here however limit the question by supposing
that the motion about which the system is oscillating is what has
been called in Chap. L steady. The analytical peculiarity of such
a motion is that when referred to proper co-ordinates, every coeffi-
cient in each of these two series is constant, i.e. independent of ¢.
As already explained the physical peculiarities are that the vis
viva is constant throughout the steady motion and the same oscil-
lations follow from the same disturbance at whatever instant it
may be applied to the motion. A method of discovering the
proper co-ordinates, if unknown, will be given a little further on.

3. In order to form the equations of motion we must now
substitute in Lagrange’s equations

ddr _dT dv_,
zdo " aetae="
&e. =0,

rejecting all the squares of small quantities. The steady motion
being given by 6, ¢, &c. all zero, each of these must be satisfied
when we omit the terms containing 6, ¢, &. We thus obtain the
- equations of steady motion, viz.

A =E,
A,=E,

&e. = &e.
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These equations may be simply formed in any case by the
following rule. Putting L=T-V, so that L is the difference
between the kinetic and potential energies, expand L in powers of
the co-ordinates 0, ¢, &c: regarding &', ¢, &c. as zero. The required
relations are obtained by equating the coefficients of the first
powers to zero. This rule may be also expressed thus. Let L be
the general expression for the excess of the kinetic energy over the
potential energy of a dynamical system in terms of its n co-ordinates
£ n, &c. Let this system be moving in steady motion with constant

values of % ) ‘31—'17_', &c* Then substituting these constant values in

the general expression for L, the relations between the constants of
steady motion are given by

dL 0 dL
d¢ 7 dy _
In this way we obtain in general as many equations as ‘there
are co-ordinates. Usually the coefficients in the expression for T'
are constant because some of the co-ordinates are constant in the
state of steady motion, and the other co-ordinates appear in the
expressions for 7' and V only as differential coefficients. In such
cases we have clearly fewer equations than co-ordinates to con-
nect the constants of steady motion. We have then a system of
possible steady motions which we may conveniently term parallel
steady motions.

=0, &ec.

4. To obtain the equations to the oscillatory motion, we retain
the first powers of 6, ¢, &c. We thus obtain a series of equations
of which the following is a specimen : :

(B f-‘An+Eu)a

n g
d

+{Bu Gt (Ca=C) §— At B} ¢
d’ d

+{By T+ (Cu- ) G~ Au+ B} ¥

To solve these we write
0=Me™, ¢p=Me~, =Me~, &c.
Substituting we obtain on eliminating the ratios M, : M, : M, &c.
a determinantal equation, viz.

* Bince we may in Art. 1 change the co-ordinates from £, 7, ¢, &e. to £, ny, &,
&o., where £=f(£,) n=F(n,) &e., it is clear that the steady motion can be always
expressed by constant values of the differential coefficients of the co-ordinates.
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&e. &c. &e. &e.

This eqﬁation will be referred to as the Determinantal equa-
tion.

5. If we refer to the equation formed by this determinant
and read it in horizontal lines, we have of course the séveral
equations of motion, each term being the coefficient of 8, ¢, ¥, &c.

in order. In this form the equations may be reproduced by the
following easy rule. :

Taking the expression for '— V as given in Art. 1, let us
consider only the terms of the second order, those of the first
. having been already used to determine the steady motion as ex-
plained in Art. 3. Separate from the rest, the even powers of
0,0,¢,¢, & and write for 67, 0'¢', &e. — D*¢, — D*0¢, &c., so
that D will stand either for ‘% or for the m in the determinant
of Art. 4, when we write § = M, ¢™, ¢ =M™, &c. Let the sum
of these terms be called P, so that

P=}(4,-E,- B, D) 6" +(4,,— E,,— B, D) ¢ + &c.

Let the remaining portion of the terms of 7'— V, viz. those con-
taining both 6, ¢, &c. and ¢, ¢', &c., be called Q, so that

=C,00 + C0¢ + C, 90 + ...

Then the several equations may be formed from the rule

dP dQ ,dQ _
Eg-l-dj—pa—g——o
dP dQ . dQ _
Zai‘(ﬁ—pw—o

&c. =0

In applying this rule no accented letters will occur except in
the second term of each equation. If we wish D to stand for m
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in the determinant, we must regard &, ¢’, &c. as abbreviations for
Db, Dp, &c. If we wish to use the equations themselves, we
replace DO, D¢, &c. by €', ¢, &c.

[The determinant may also be found by another rule. Taking
as before only the terms of the second order in the Lagrangian
function L =T'— V, let us separate the terms of  the form

Q=006 + C, 04 + Cof'd+ &e.

In the remaining terms put & =0m~ -1, ¢' =¢m~' =1, and
8o on, and write down the discriminant. If the system oscillates
about a position of equilibrium the terms represented by Q are
absent and the discriminant thus formed will be the determinantal
equation giving the required values of m. But if the system
oscillate about a state of steady motion we must modify the dis-
criminant by adding some quantity derived from @ to each term.
To find this, write above the columns ¢, ¢, &c. and before the
rows 6, ¢, &c. Consider any term, say the term in the column
¢’ and row 6. We must add to that term (C, — C,) m, where
Cy;— C,, is the excess of the coefficient of ¢'0 above the coefficient
of ¢0' 1n the expression for ¢. Since the determinant is un-
changed by writing —m for m, we may, if preferred, add the
excess of the coefficient of #¢ above the coefficient of 6¢' provided
we adhere to one order throughout.]

6. Ifin the determinantal equation we write — m for m, the -
rows of the new determinant are the same as the columns of the
old, so that the determinant is unaltered. When expanded, we
shall have an equation which contains only even powers of m.

The condition of dynamical stability is that the roots of this:
equation should be all of the form

m=+BN=1.

If we write m*=—p*, the roots of the transformed equation -
must be aH real.

In the case of equal roots of the form m=+B~—=1, it has
been shown in Art. 5 of Chap. I. that it is necessary for stability
that the proper number of minors in this determinant should
vanish. If there be two equal roots, these roots must make all
the first minors zero ; if three equal roots, all the first and second
minors must vanish, and so on. .

7. When the system depends on many co-ordinates the labour
of expanding this determinant is often considerable. Methods of
evading this in certain cases will be given in the following chap-

R. A, - 4
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ters, But when the development is necessary we may proceed in
the following manner. Let the determinant be written

Bllm. + al! 'Bﬂm’ + aﬂ Bllm’ + alﬂ

+ F“m + 'F'llm
Bm*+a, Bm'+a, Bm'+a,|
+ Fm + F,m
&e. &e. &e.
and let # ‘
B=B, 3t B¢ +...,
a =a“%' +abd+...,
F, =-F,

We know that the determinant when expanded is of an even
order, hence all odd powers of m must finally vanish. Let us
expand the determinant in powers of the F’s. The first term is
the discriminant of Bm®+a, this term is independent of the F7s.
The terms which contain the first powers of the F’s are obtained
bg' erasing any one line of this discriminant and replacing it by
the corresponding F terms. But these terms all vanish and we
need not describe them minutely. The terms containing the
products and squares of the F’s may be obtained by erasing every
two lines of the discriminant and replacing them by the corre-
sEondingFterms. Thus if we erase the two first lines we have
t

e determinant -
0 F.m Fym &
~Fm 0 Fygm  &e.
Bm'+a, B,m'+a, Bm +a, & |
&e. &e.

and so on for all the other rows taken two and two. The terms
which contain the cubes and all odd powers of the F”s vanish,
while the terms which contain the fourth powers may be obtained
by erasing four lines of the discriminant and replacing them by
the corresponding F7s.

When the determinant has been expanded, we have an equa-
tion of an even order to find the values of m. We may therefore
employ the short method of Art. 5, Chap. 11, to obtain the
Sturmian functions.

8. Necessary and sufficient tests of the stability of the motion
of a system of bodies are given in the preceding pages. But it
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is assumed, as explained in Art. 2, that the co-ordinates have been
properly chosen. They are supposed to have been so chosen that
the coefficients in the expanded Lagrangian function are all
constants. When this is not the case we must discover the
proper co-ordinates to which the system must be referred before
we can apply the test of stability, But when the motion is steady
this is not difficult.

There are obviously many such systems of co-ordinates, and
one set may generally be found by a simple examination of the
steady motion. If there are any quantities which are constant
during the steadg ‘motion, they will often serve for some of the
co-ordinates. . Others may be found by considering what quan-
tities appear only as differential coefficients or velocities. Practi-
cally these will be the most convenient methods of discovering
proper co-ordinates, since no further change will then be necessary
and we may at once form the determinant of stability. But if
these methods fail we may adopt the following analytical method
of transforming (where possible) the general Lagrangian function
with variable coefficients into one with constant coefficients.

9. Let the Lagrangian function be
L=L,+Af0+A44+&c+Bo +Bg +&e.
+3 A0+ A.0¢+...
+3B,0*+BO¢ +...
+ 0,00 +C.0¢ + C ¢t +...
where the coefficients are all functions of ¢ and the co-ordinates

0, ¢, &c. have been so chosen as to vanish along the steady motion,
‘We have therefore for the steady motion

dp_4-0,

dt &e. =0.

The oscillations about the steady motion are given by the
terms of the second order. Our present object is to transform
these to others with constant coefficients by the following substi-
tutions :

0=pzx+py + pz+ &e.,
¢=g2+ gy +g7+&e,
&e. = &e.,

where the p’s, ¢’s, &c. are functions of the time at our disposal.

_Substituting and equating the coefficients of 2, y* &c. to
unity, we have as many equations of the form

%Bllp’-l‘-%B”q"i'Bmpq‘l' B P (1)
: 4—2
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as there are co-ordinates. Equating the coefficients of the pro-

ducts 2'y/, «'7, &c. to zero we get n 2;—1 equations of the form

B p. 0+ Budigs + By (2 +P:g) + 400 =0 e @),
supposing that there are n co-ordinates.

Equating to the constants a,, a,, ... the coefficients of 22, yy',
&c. having subtracted the differential coefficients of (1) we have
n equations of the form . ‘

(Cu_"}Bu').p,'l' (Cn_%Bnl) q’+ (0u+ Csl—Bn’) pgt...= d...(3).
Adding the coefficients of zy’ and @'y and subtracting the
differential coefficients of (2) we have n

2
form

equations of the

(2011 - Bn,) p.p,+ (2 022 - B“,A) q'q'} =0....... (4)
+(0y+ Oy — B,) (g, +Pug) + -

Equations (1), (2) and (4) give n* equations to find the n’
quantities p,p,, &c., ¢,9,, &. The solution of these equations is a
purely geometrical problem. If we construct the two quadrics

$B,6°+ 3B '+ B 0p+...=1,
(Cu=3B,) @+ (Cy—3Bp)¢'+ (Cy+ C,,— B )0 + ... =1,
“and refer them to their common conjugate diameters, by writing

O=px+py+...
b= +qy+ ...
&e. = &e.,

making the first quadric to become what we may call a sphere by
projection; the values of p,p,, &c., ¢,9,, &c. thus found are the values
required -to make some of the coefficients in the Lagrangian
function become constant. These values must of course make all
the other coefficients of the second order in the Lagrangian function
constants also, and thus we have 5 (n+ 1) analytical conditions
that the motion should be steady.

It might be supposed that greater generality would be obtained
by replacing the zero’s of equations (2) and (4) or the unities of
(1) by arbitrary constants. This may be convenient in practice,
but as we know that by a subsequent real change with constant
values of p, ﬁ;,, &e., ¢,9,, &c., we can render them zero or unity, it
simplifies the argument to perform the two transformations at
once.
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10. The geometrical problem just alluded to admits of a real
solution whenever one quadric can be projected by a real projection
into a sphere. The problem then becomes that of finding the
principal axes of the other. This is just our case, since the ex-

pression
3B, 0" +B,0¢ +...
is necessarily positive for all values of &'¢'.

It is unnecessary to describe here the mode of solving this
problem. It is sufficient to say that it may be reduced to the
solution of the symmetrical determinantal equation

B,—-AD,, D,—\D, ...|=0,
By—=AD, Dy—A\D, ...
where D,,, D,,, &c. are the coefficients of &, 8¢, &c. in the second

of the quadrics. The roots of this equation are known to be real
when the suppositions just mentioned are satisfied.

11. In order to examine the fundamental determinant in
Art. 4 a little more closely, let us suppose it reduced to depend on
three co-ordinates. We may then have the advantage of a geo-
metrical analogy. Let the co-ordinates be & 7, ¢ and let the
equations of motion be written

. a d
d? Buzzl - Au Bls de~ Axa
(Bud_t!"Au)f"' d 7+ d ¢£&=0,
—G(Yt +F(7t
a ar
B, -4 B, % -4
8 12 a* 23 28
( d d )E'l‘(.BBa—-t.—A”)ﬂ-l-( de* d )§=0,
a’ a ‘
B, % -4 B, % -4 '
aé 13 2 g 3
( p )E+( @ >n+(B,,§-A,,)g=o.
—Fa-t +E‘(Tt

Let a geometrical point P move in s&a.ce so that its co-or-
dinates referred to any axes are § 7, & Then the position and
motion of the point exactly give us the position and motion of
the system.

12. Looking at the equations of motion just written down we
see that they are similar to those which give the oscillations of a
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system about ‘a position of equilibrium, but that there are in
addition terms E Z—Z ) F‘%, &ec. The general effect of these terms,
as will appear from what follows in the subsequent chapter, is to
increase the stability. If we transpose these terms to the other
sides of the equations, we may regard them as impressed forces
acting on the system, whose resolved parts in the directions of the
axes £, 7, §, are

— oW _ pdt
X"GZt—th
_ pdf  dE
Y‘E%"Ga? .
y_ pE_ pdn
Z—F%—E%

‘We see at once that
EX+FY+GZ=0

€y dny d, of’
X+t Y+ 32=0

so that these forces are at once orthogonal to the path of the
representative point P and also orthogonal to the straight line
whose direction cosines are proportional to E, F, G. These forces
are therefore of the nature of centrifugal forces, as if they were
produced by the rotation of the system about this straight line.

13. We may show that the straight line (£, F, @)is fized in
space. To prove this, let us transform our co-ordinates from &,7, &

to @, y, 2, where @, y, z are connected with £, 5, { by any linear
relations, such as

n=ax+by+cz
C=ax+by+cg

Let the portion of the Lagrangian function under consideration
(Art. 1) be - & '
Gn E' + 01:5’7, + 021’7?"' oo
then G=0C,-C,, E=Cy-C,, F=C, - C,,

Substituting for £ #, £ their values in terms of «, y, 7, we find that
the difference between the coefficients of zy' and z'y is

G=G +E +F

E=azx+by+ clz}

a, a,

bl b’

Gy By
bn bs

aa a’l
bs b1 > .
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with similar equations for £’ and F”. But if u be the determi-
nant of transformation

pe=¢

a, a, +E'a,a,|-i-nlaz,a1
b, b, b, b, b, & 1’

with similar equations for z and y. The ratios of E, F, @ are
therefore tra.nsgormed as if they were co-ordinates. If the trans-
formation be a real transformation of Cartesian co-ordinates, let
lengths each equal to unity be measured from the origin along the
axes Of, Oy, O thus forming a tetrahedron whose volume 1is V.
Let a similar construction be made for the new axes, forming a

tetrahedron of volume V. Then* p=%: . Hence the quantities

’I—E,, 117:, g may be transformed as if they were lengths measured

along the axes and become %’, lvi,", % If both systems of co-

ordinates are rectangular we have V=%, V’=%.

Let w be the resultant of %',, IE" , TG,, then @ may be regarded

as a fized length measured from the origin along a straight line
Jiwed in space.

Let v be the velocity of the representative particle, 8 the angle
between the direction of this velocity and the axis whose direction
cosines are proportional to K, F, G. Then the resultant of the
forces X, Y, Z is easily seen to be 2v Vw sin 6 acting perpendicular
to the axis and to the direction of the motion. We might call the
straight line (EFG) the axis of the centrifugal forces.

[* Let (&, §;), (E379 &), (& be the co-ordinates of three points 4, B, C re-

erred to anylotlilque go-’ igmat’.e? g")Lei: us find the volume ¥’ of the tetrahedron
of which these and the origin are the angular points. Since the volume vanishes
when any angular point as C lies in the plane containing the origin and thé other
two 4, B, the expression for the volume must contain the factor

8 & &
M7 N 1
a6

The volume is evidently an integral rational funotion of the co-ordinates when
the axes are rectangular and the plane AOB is taken as the plane of zy, it
easily follows that this is true for all axes. Since this function cannot be of more
than the third order, we have V’'=Mpu, where M is independent of the co-ordinates
of 4, B, C. When the points 4, B, C are on the axes at unit distances from the
origin, let ¥ be the volume of the tetrahedron. In this case x=1, and ... M=V,
‘We have therefore in all cases V' = Vpu.

In the text, let the extremities of the unit lengths measured along the axes of
@, Yy, 2 be called 4, B, C. Then the (£79¢) co-ordinates of 4, B, C are (a,, a,, a,),
b1y bgy by)y (¢4, €4, €3), Tespectively. Hence by what has just been said V'=Vu.] -

’L=
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14. The expressions for the co-ordinates in terms of the time
will in general contain as many periodic functions as there are
co-ordinates. If the initial conditions are such that each contains
one and the same periodic function, the motion recurs after a con-
stant interval and the system is said to be performing a simple or
harmonic oscillation.

If the system be oscillating about a position of equilibrium,
'with a Lagrangian function

A8 +24, .80+ ...
+ B,E*+ 2B E7 +...

we know* that the harmonic oscillations are represented by rectili-
near motions of the representative particle, and that these are
along the common conjugate diameters of the two quadrics -’
equations are

4.5+ 4804 ..=a

B i BEs.. =

where a ahgl B are two constants chosen to make the quadrics real.
Let us consider what are the harmonic paths of the representative
point when the system is oscillating about a state of steady motion.

In any harmonic vibration we have &= L.cos (M + a) with
similar equations for » and & Henee
aE _ 2 4 N _ 2 (l’f_ 2
F—_xEr a't—a—_x y d_t’—-x;:

Substitute these in the equations of Art. 11. Differentiate and
substitute again. Multiply by £, #, ¢ add and integrate, we obtain
3 ¢
(Bn§+B,,£q+ ) x’+(Au§2-+ Ar+.) =0,

where c is some constant. The harmonic sa.th lies on this quadric,

which. has a common set of conjugate diameters with the two
quadrics @ and b.

If we resume the result of the substitution of ‘%:, &c. in the

equations of Art. 11, and multiply by E, F, G respectively and add,
we obtain

[(BoE+ ByF + B,,G) E+ &c] N +[(A E+ ...) E+&c] =0,

* A short paraéraph in Thomson and Tait's Natural Philos e 273, is
the only notice of this which the author has discovered. P, P8 '
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which is a plane, and is diametral to the straight line (EF @) with
regard to the quadric c.

The harmonic paths are therefore ellipses. The three harmonic
planes are diametral to the same straight line and this straight

- line is fixed in space, being the axis of the centrifugal forces.

If we eliminate A between the equations to the plane and the
quadric ¢, we get a cubic surface on which the three harmonic
conics lie.

If E, F, G are zero, which is the case when the system oscillates
about a position of equilibrium, the quadric ¢ becomes a cylinder.
This may be conveniently shown by referring the system to such
co-ordinates that the coefficients By, By, By, Ay, A, Ay are all
zero.. In this case the diametral plane of every straight line passes
through the axis of the cylinder. The harmonic oscillations are

. therefore rectilinear.

If B be the length of that semidiameter of the quadric (c)
which is parallel to the fixed straight line (E, F, @), it may be
shown that the

Product of the a.xes} _ R 2¢
of the quadric ¢ JE+FP+ G M

If E, F, G are all zero, and their ratio is indeterminate, R is

any diameter. Hence one of the axes of the quadric (c) must be

* infinite and the quadric will be a cylinder.

[If the quadric (c) be a cy.liﬁder and E, F, G are not all zero,
we must have either A zero or R infinite. In the latter case the
axis of the cylinder will coincide with the axis of the centrifugal
forces.] '

The quadric (¢) has also the following geometrical property.
Let the lengths of semidiameters of the quadrics (a) and (E) rawn
parallel to the axis of the centrifugal forces be p and p’. Through
the intersection of*these quadrics describe a quadric so that the

Product of } _ 2/ ab (;717’ B p_l’) R
e D
p .

This quadric is similar to the quadric (c).

15. The introduction of the representative point to exhibit
the motion of a system may appear somewhat artificial. If how-
ever we properly choose the co-ordinates the particle moves exactly
as a free particle, and we might reduce the problem of finding the
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oscillations of a system to a problem in Dynamics of a particle.
Refer the quadric

B.E+B g+ ...~
to its principal axes and let the equation thus changed be
B,.":;l’+ B, '12'1+...=b.
Since By, B,;, &c. are positive quantities, we may put

V'_B—;llgl =z, N Bu,’h =Y &e.

The quadric has thus been “projected” into a sphere. Let @, y, 2
be now chosen as the co-ordinates of the system and let the
Lagrangian function be expressed in the form

L=a"+y*+4"'+} A2+ A,y + ...
+ Cpaex’ + ...

the terms of the first degree being omitted as not necessary to our
present purpose. The three equations of motion at the beginning
of Art. 11 take the form

(£ a)en (chue 0y 4as7) mo
&e. =0,

which are the three equations of motion of a free single particle
whose co-ordinates are @, ¥, z under the action of forces whose force
function is -

34,2+ A xy+...

and a force acting perpendicular to the path and also perpendicu-
lar to a fixed straight line, the force being proportional to the
velocity.

16. As an illustration of this theory, let us here make a short
digression. However the particles of light may oscillate, whether
in a rotatory or linear manner, we know the motion is related to a
certain plane called the plane of polarization. It may be shown
that any harmonic oscillation about, a position of equilibrium may
be represented by a rectilinear oscillation of the representative
particle. Let us represent the motion at any point of the ether
by a rectilinear oscillation in a direction perpendicular to the
plane of. polarization. This would be Fresnel's Vibration. The
representative particle, as just shown, would not necessarily move
ag if it were a free single particle. But let us assume (and a proof
is not necessary to our present purpose) that when the oscillation
is drawn as above described the motion in the plane of the front
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is the same as that of a free particle, while that perpendicular is
not free. On this assumption we see that Fresnel in his theory
of double refraction is justified in taking actual instead of relative
displacements, for it is the representative particle he is considering.
He also neglects the force normal to the front, for the particle
moves as a free particle only in the plane of the front. These
general remarks are not meant to explain Fresnel’s theory, but
merely to show how the representative particle may be used to
replace a complicated motion.

17. [When a system is performing a harmonic oscillation
about a state of steady motion or about a position of equilibrium,
the motion repeats itself continually at a constant period, that is
to say, the values of the co-ordinates recur at this interval. This
is the chief peculiarity of a harmonic oscillation. ~'When the
oscillation is about a position of equilibrium, the representative
particle oscillates in a straight line whose middle point repre-
sents the position of equilibrium. Thus the system passes through
the position of equilibrium twice in each complete oscillation.

When the oscillation is about a state of steady motion the path’

of the representative particle is an ellipse whose centre is at the
point occupied by the system in steady motion at the same in-
stant. Thus the system does not in general ever coincide with
the simultaneous position of the system in the undisturbed or
steady motion. When a system is disturbed by a small impulse
from a state of steady motion, it will in general describe & com-
pound oscillation made up of at least two harmonic oscillations,
at the instant of disturbance these two neutralize each other so
that in the disturbed and undisturbed motions two simultaneous
positions are coincident. But it is clear that this cannot occur
again unless either the periods of the two harmonics are com-
mensurable or the period of one of them is infinite.]

18. [In some cases the ellipse degenerates into a straight line.

" Thus if the quadric (¢) be a cylinder the diametral plane of the

axis of the centrifugal forces will pass through the axis of the
cylinder, and thus the harmonic oscillation corresponding to this
particular value of A will be rectilinear. In this case the system
twice in each oscillation passes through the position it would have
occupied at the same instant in the undisturbed motion.

The quadric (c¢) has a common set of conjugate diameters with
the quadrics () and (8). Hence if (¢) be a cylinder, its axis must

“be parallel to one of the three common conjugate diameters of (a)

and (b). If we refer the quadrics (a) and (b) to their common
conjugate diameters, they take the form
A;E+A;#+A;?=2ﬂ
B8+ BJn'+ B, *=2b)"
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The cylinder which passes through their intersection and has
its axis parallel to the diameter {is found by eliminating ¢* between
these equations. We see therefore that B,/'A*+ 4,/ =0. If then
the axis of the cylinder cut the quadrics (a) and &) in D and D/
respectively, we find that for this oscillation :

x'l—@’_z :_g'
=00 F "

It has already been shown that when this value is finite, the
direction of ODI is along the axis of the centrifugal forces.]

19. [In some cases two or moere of the values of A are zero.
In these cases the co-ordinates will have terms of the form nt + ¢,
where n and e are two small constants. When, as explained in
Art. 8 of this Chapter, there are several parallel states of steady
motion, these terms imply that the motion is stable about a state
of steady motion very nearly the same as the undisturbed motion
but not coincident with it. The actual undisturbed motion, unless
n is zero, is unstable in the sense that if a proper disturbance
be given to the system, the system will depart widely from the
positions it would have simultaneously occupied in the undisturbed
motion.]

20. In many cases of small oscillations it will be found that
the Lagrangian function 7'— V is not a function of some of the
co-ordinates as 0, ¢, &c. though it is a function of their differential
coefficients ¢, ¢', &c. In such cases the steady motion will be
usually given by constant values of these differential coefficients,
while the other co-ordinates as &, n, &c. are also constant. It is
evident that the determinantal equation of Art. 4 is needlessly
complicated. It is clear that there will be as many pairs of roots

ual to zero as there are co-ordinates 6, ¢, &c. It will be an
:ﬁvantage to eliminate ¢, ¢', &c. altogether from the Lagrangian
function, and to find the remaining roots by operating only with
the co-ordinates £, n, &c. We shall thus obtain a determinant with
just as many rows as there are co-ordinates of the kind £, 7, &c.

Let L, be the Lagrangian function expressed as a function of
0¢, &c. &, £, &c. Let L, be its value when '¢’ are elimi-
nated, so that L, is a function of &, £, &c. only. To effect this
elimination we have the integrals

aT ar &
W =¢Cyp %, = C,, &C.
where c,, ¢,, &c. are constants. Then
dL, dL,  dL, d¢' A dL, d¢'
W—a? Jo—,.dg'l'wodel'*'&c.
_dL, , d¢  d¢
—a?+c'a-?+0,¢zg+ or
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dL, dL, . d¢  _d¢
d—g—gfl'*'cld—g-l'c.'d—g*'...

. ddL, dL, ddL, dL dde do

o A A R ¢ 3 A IR
ddL, .dL,_ '

But G dE ==

Hence 1f we take

L'=L-cf —cg¢ —de
and dliminate @, ¢ by help of the integrals S&=c,, %‘,ﬂ,,
we may treat L' just as we do the Lagrangian function L. The
gdu;ztb;m giving the small oscillations about the steady motion
ddu_du
dt d¢' d¢
The function L’ may be called the modified Lagrangian function.

[1t should be noticed that this is equivalent to a partial use of
Hamilton’s transformation of Lagrange’s equations. Sir W. R.
Hamilton eliminates all the differential coefficients &, ¢', &c. by

the help of equations of the form %’L U, :—l”,’= v, &c. where u, v,

=0, &c.=0.

&c. are made to be new variables®*. In our transformation only

* The Hamiltonian transformation of Lagrange’s equations bears a remarkable
analogy to the transformation of Reciprocation in Geometry. This may be shown
in the following manner,

‘When the system has three co-ordinates 0, ¢, ¥, We may regard ¢, ¢/, ¥/ as the
Cartesian co-ordinates of a representative point P. The position and path of P will
exhibit to the eye and will determine the motion of the system, Let u, v, w be the
Hamiltonian variables, so that ar

1

wodls 4T, df,
—do', _d¢" _dll/’

where T, is the semi vis viva expressed as a function of 6, ¢, ¥, ¢, ¢, /. Then
u, v, w may be regarded as-the co-ordinates of another point @ whose position and
path will also determine the motion of the system.
If the semi vis viva be given by the general expression
Ty=3 4,00+ 4,00 + ...

it is clear that the point P always lies on the quadric T',= U where U is the force
function and the co-ordinates 8, ¢, ¥ have their instantaneous values. The point
Q must therefore lie on another quadric which is the polar reciprocal of the first
with regard to a sphere whose centre is at the origin and whose radius is equal to
A/2U. The equation to the reciprocal quadric is therefore

r= _}_ 0 u v w|=p,

STT2A u Ay 4y, Ay

A’l’ A” A”
Ayg Ay Agg

S e
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those new variables are introduced which would be constants in
Sir W. R. Hamilton’s transformation. ’

- This remark suggests an extension of the process. If L be a
function of 8, ¢, &c. as well as of &, ¢, &c. the quantities ¢,, ¢,, &c.
will not be constants. We express this by writing %, v, &c. instead
of ¢,, c,, &. Sup we wish to eliminate some of the differential
coefficients, viz. ¢, ¢, &c. and to retain the remaining ones, viz.
£, 7, & If we put )

L'=L—-ub' —vp —&e.

we may easily show- as in the preceding page that
d dll dL
- = ——=0, &c.=0.
at df ~ dE
where A is the determinant, oalled the discriminant, which may be formed from
the determinant just written down by omitting the first row and the first column.
This is a general expression for the Hamiltonian function and agrees with that
which may be deduced from the result in Art. 21, when all the variables are trans-
formed by the Hamiltonian process.
Since the polar reciprocal of the polar reciprocal is the original quadrie, it
follows that ar ar. ar
='d_u” ¢'=W', 'V= ﬁv
which are three of the six Hamiltonian equations.
‘We may also show geometrically that if the coefficients of T; be functions of
any quantity 6, then -dT‘= —’f—;’. To prove this we notice that if z, g, z be the
co-ordinates of a point P, situated on & radius vector OP’ of a quadric

B tH ]
¢ (5 3, £)=1 referred to its oentro 0, then ¢ (& %, 9=( op) - The quadries

T,=1and Ty=1 may be regarded as polar reciprocals of each other with regard
to a sphere whose radius is o/2 and whose centre is the common centre of the
two quadrics, Let P be any point on the quadric T;=1, and let the radius vector
be produced to Z so that OP . 0Z=2, then the quadric Ty=1 touches a plane
drawn through Z perpendicular to OP and Q is the point of contact. Let these
quadrics be slightly altered in comsequence of a variation of 6, so that their
equations are now 7)+d7;=1 and T’+dT,=1. Let OP and 0Q produced cut
these quadrios respectively in P’ and Q'. Then
r+dar=(%2Y, m+ar,=(22)
1 1 or ’ 2 = OQ' .
Now if Z’ be & point on OP produced so that OP' . 0Z'=0P . 0Z, the quadric
T,+dT, will touch the plane drawn through Z’ in some point ¢ near Q. The
point @’ will therefore lie very nearly in the tangent plane, so that by similar

triangles
0Q _0zZ_ OoP
0Q¢ 0z~ 0P’
2?“ e?io; of these ratios is indefinitely nearly equal to unity, it follows that
|= - 2

If weput L=T,+U and H=T,;- U, Lagrange’s equations may be written in

the forms u’=—dg , ¥'= s’ w'= v Hence we have
dH dH dH
—t = —— - '=_ - = —_—
=g v do’ L ay’

which are the remaining three of the Hamiltonian equations.
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We have thus as many eduations of the Lagrangian form as
there are variables £, 5, &c. Also since u= 0’ &c. we have by
differentiation :
dL' (dL do ,
—‘E=(W—u)a—u——0'+&c.-——0,
with similar equations for ¢, &c. By Lagrange’s equations we
obtain

ar
- df

Thus we have as many sets of equations of the Hamiltonian

form as there are variables 8, ¢, &c.]

=u/, &e.

21. We may effect this elimination once for all and find a
definite expression for L',

Let the kinetic energy be
2
T= T L 4+ Ty 04 + ...

Then the integrals used will be-
Tt +Togd + ... =, — T8 = Toyn' — ...
T“0'+T“¢'+ es = Cy— T“f'—T@,T)I—n-
&e. = &e.

For the sake of brevity let us call the right-hand members of
these equations ¢, — X, c,— ¥, &c. Since T' is a homogeneous
function, we have

T=Tee§+'-"en?ﬂ'+... }

+10(0+ )+ 1 0+ N+ &)

o D= Ty T 48—V } .
—10(6-D -1¢(a- D -

If we substitute in the second line the values of &, ¢’, &c. found
by solving the integrals just written down, we have

]
I'=Te% + Tokn + &=V

10 ¢—X ¢-Y
24 cl—X T” TN ses
O,—Y T“, TM o |?

+
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where A is the discriminant of the terms in T, which contain only
¢, ¢', &c., and may be derived from the determinant just written
down by omitting the first row and the first ‘column.

We may expand this determinant and write it in the form

2
LTS 4 T + 80— 7

+l°c. 6 |, L1]0. X T ..
280 ¢, T Tog <«io| 28|X To Toy -
Cq T“ T“ s Y T“ T“ oo
110 X Y
A ¢ Tao T” ,
C,

T“ T‘N’ eee

where X, ¥, &c. stand for

X=Tu& + Toyn' +...
Y=Ty&+ Tgpn'+..op -
&e. = &c.

The first of these three determinants will contain only the
constants ¢, ¢,, &c., and the co-ordinates £, 5, &c. The second will
not contain ¢,, ¢, &c. but will be a quadratic function of £, %', &c.
The last determinant will contain terms of the form £, 5" with
variable coefficients which may also be functions of ¢, ¢;...

Since £F, 77, &c. are all small quantities, it is clear that this
expression for L' when expanded will take a form precisely similar
to that given in Art. 2, only that we have fewer variables to deal
with.,

22. Asan example, let us consider the following problem.

A body has a point O which 1s in one of the principal axes at
the centre of gravity G fized in space. The body s in steady
motion rotating with angular velocity n about OG which 1s vertical.
Find the conditions that the motion may be stable.

Let 04, OB, OC be the principal axes at O and let OC co-
incide with the vertical OZ in steady motion. Let &, 7 be the
direction cosines of the vertical OZ referred to OA, OB. Let
w,, o, , be the angular velocities about the principal axes at O.
Then to the first order

o= ﬂ'+wsl‘}
w,=—f'+a),n
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Let 6 be the angle ZOC, ¢ the angle the plane Z0C makes
with a plane ZOX fixed in spaceand ¢ the angle it makes with
the plane 4 OC fixed in the body. Then

= —gin 6 cos ¢
n= sin@sing¢)’
w,=¢' + Y cos

=¢+6-4)(1-5).
putting x=¢ +y. We easily find

w=x —x EXT 3 5 - 9.

If then A4, B, C be the principal moments of inertia at O, the:
Lagrangian function is

c ' *
=5 {¥ (1- 557 - e - em)
A (4 ’ -B ’
+3 0 + X8 +5 (- & +x)'
- _&+ n')
Mgh (1 Al
where M is the mass of the body, and k= 0G.
Since y is absent from the equation we have the integral

ar _
dxl - cp
which gives ,

x = n + terms of second order.

Hence
L' =L~ Cny
4 , B
=Con8t+§ 9)’-’- '§ e‘,

2
(4= O)nt+ Mghy S+ (B— )t + Mgh) T
o} , Y
+ (A —2—) nfy — (B_E) nEn.
Using this as the Lagrangian function we easily find

I(A—C)n’+Mgh—Bm’, (44+B-C)nm =0.
—(4 + B- C)nm, - (B-0O)n'+ Mgh— Am®
R. A 5
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The roots of this equation to find m must for stability be of
the form + BV ~1. Putting m*=—\* we have a quadratic to
- find M. The roots of this quadratic must be real and positive.

If A =B, as in the case of a top spinning with its axis vertical,
we have

94— C O — 4 AMgh
7‘.“*{ g4 "% 24 }

The motion is stable or unstable according as C*s® is greater or
less than 44 Mgh. If C’n* = 4A4Mgh, the equation has equal roots
and as the first minors are not zero the motion is unstable.

23. [As another example of the use of the modified Lagrangian
function, let us consider a case discussed by Prof. Ball in the
Notices of the Royal Astronomical Society for March, 1877. In a.
problem in Physical Astronomy, we want the relattve co-ordinates
of the system, while its absolute motion in space does not concern
us. Lagrange’s equationsinvolve both the relative and absolute
co-ordinates, and are therefore not particularly well adapted for
such problems. By using the modified Lagrangian function, we
may eliminate the absolute co-ordinates.

Let the system have n co-ordinates, let us choose as three of
them the co-ordinates of the centre of gravity of the whole system,
viz. 6, ¢, Y. There will then remain n— 3 co-ordinates which are
independent of these. Let 1" be the kinetic energy of the system
relative to its centre of gravity, V the potential energy, M the
whole mass. Then the Lagrangian function is

1 '
L=3 M0+ ¢+ 4+ T'— V.

In problems in Physical Astronomy the potential energy is a
function only of the relative positions of the bodies, and is there-
fore independent of 6, ¢, Y» and their differential coefficients. We
have therefore

aL_ dp_ L _
dg= GFTw qpT

Hence the modified Lagrangian function is

L'= T — V— a constant.

It is independently clear that we might take this as the
Lagrangian function, for the first three terms of L do not enter into
any one of the Lagrangian equations, except the three formed by
differentiating with regard to ¢, ¢', .

The function 7” is made up of two parts, (1) the kinetic energies
of the rotations of the bodies about their centres of gravity, which
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we may call 7, and (2) the relative kinetic energies of the several
~ bodies, each collected at its centre of gravity, which we may call
T,. Let m, m, &c. be these masses; @, x,, &c. the abscisse of
their centres of gravity referred to the centre of gravity of the .
whole as origin. Then, accents denoting differential coefficients
with regard to the time, we have
ma, + mg, + &c.=0,
Let us square this and write
22w, =2 + 2, - (2 —@,)"
. If we examine the coefficient of any power as ," we see that it
is
m?2 + my(m, + my+ &e.) = m,Sm.
Hence the square becomes

Sim Zmad* — Zm,my (e, —2,)' =0.

Similar expressions hold for the y and # co-ordinates. Hence
on the whole we see that the relative kinetic energies of the several
bodies collected at their respective centres of gravity is

D Smmy’*
. T 23m
where v is the relative velocity of the centres of gravity of the
masses m,, m,. If we express this in any kind of co-ordinates, we
may use the Lagrangian function L’ to find the relative motion.

The expression for 7, agrees with that given by Prof. Ball, but
his demonstration is quite’ different. Prof. Cayley has given
it\}lother demonstration in the same number of the Astronomical

otices. ,

The Lagrangian function thus found may be still further
“modified.” To avoid symbols of summation, let us consider the
case of three particles moving in oune plane under their mutual
attractions, ]?et the separate masses be m,, m,, m,, and let u be
their sum. Referring the system to m, as a central mass, let the
distances of m,, m, from m, be respectively r and p, and let the
opposite side of the triangle be R. Let the interior angle be-
tween r and p be ¢ and the exterior angle between » and R be
x- Let 0 be the angle r makes with some fixed straight line in
space. We easily find

WT = % 46" + BO' +C,
where A =mmg* + mmp* + mom R,
B =m,(mp"¢' + m,E'X),

1 ,
C= ﬂsmmv,, .
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and v is the relative velocity of the masses m, m' calculated on
the supposition that m, is fixed, and that the straight line » has
no rotation round m, <Thus A4, B, C are all functions of 7, p, ¢
and their differential coefficients with regard to the time.

If we only want the changes in the form and magnitude of
the triangle joining the three particles, we may eliminate & by
means of the equation ‘

: A6 + B=q¢,

‘We then find as our modified Lagrangian fuﬁction

,u_i 1(("1-'3)’}

which contains only the three co-ordinates r, p and ¢].

24. When the geometrical equations contain differential
coefficients of the co-ordinates §, 9, ¢, &c. of the system with regard
to the time, we cannot express the co-ordinates z, y, # of any
element of a body in terms of £, 9, {, &c. by means of equations of

the form
x =.fl. (E’ ) g’ &C., t)l

y =f;(f’ ’7’ ; &c., t)p
2 =fs(£ﬁ 7, § &c-: t)'

_ It follows, as is pointed out in our books on Rigid Dynamics,
that Lagrange’s equations cannot be employed in the form .

4 daT_dr__dv
dt df df dE°
In many of the most interesting problems in Rigid Dynamics,
it so happens that the geometrical equations do contain g—t—,
% , &c. For example, let a sphere be set rotating about a vertical
diameter and be on the summit of a perfectly rough surface of
any form. If a small disturbance be now given to it, the sphere
may roll round and round the summit. During this motion the
velocity of the point of contact is zero, and our mode of re-
presenting this analytically in terms of the co-ordinates will give us
two equations of the form .

AF+B‘)]’+ C:+ .=0,

To include such cases the equations of motion must be modi-
fied. If L be the difference between the kinetic and potential
energies, all the Lagrangian equations may be written in the form

(-2 (- sse
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* where 8£, &y, &c. are any small arbitrary displacements consistent
with the geometrical equations. But if these geometrical equa-
tions be given in the form

G=QF + G,n’+...=0*'
H=H£+H,q’+...=0f, ‘
&e.=0

these arbitrary displacements must satisfy

G, 8+ Gon+ ...=0}
&e.=0) "

If this were not the case, the geometrical displacement of the
body given in applying Virtual Velocities would not be such as to
cause the unknown frictional forces, &c. to disappear. Using the
principle of Indeterminate Multipliers, we get

ddL dL
atdf ~gg PG ulE =0
ddL dL
Etd_”,_—dn+x0,+gﬂ,+...=0

&e.=0
These joined to the geometrical equations

GE+Gy+...=0
&e. =0}’

are sufficient to determine the unknown co-ordinates £, 7, &c. and
the multipliers A, u, &c.

It will be more convenient to write these equations in the form
ddL dL _dG dH
(Tt(E'_d_E-'-ha?' +#‘?+... =0,
ddL dL . dG K6 -dH
EtlTO? %‘+Xw+ﬂw+...=0, :
&e. =0,
the geometrical equations being
G=0, H=0, &ec.

It is of course obvious that these indeterminate coefficients
A p &c. are Iperely the frictions or other resistances introduced
into the equations in a convenient form.

25. In order to apply these equations to the oscillations of a
system about a state of steady motion, it will be convenient to
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change the co-ordinates £, 9, &c. into others 6, ¢, &c. which vanish in
the steady motion. - Let L be thus expanded in powers of 6, ¢, &c.
as explained in Art. 1, and let P and @ have the meaning given
to them in Art. 5.

Let us then put
g=a"'aa 77'=B+¢,) &e.
A=N+N, p=pm+p, &

where a, 8, A, s,, &c. are the values of &, 7, A, g, &c. in steady
motion. The geometrical equations will then take the form

G=G,(a+0)+G,(B+9) +&c.=0}
&ec. =0}’

and the equations connecting 86, 8¢, &c. will be

G50+ @3¢+ &c. =0
&e. = 0} ’

In these equations @,, G,, &c. are functions of 6, ¢, &c. Let
a square bracket indicate that the value of the inscribed quantity
in steady motion is to be taken. Thus [@,] means the value of &,
when 6, ¢, &c. have all been put zero.

The equations of steady motion may then, exactly as in Art. 3,
be written

RN

[en [ [ e
&c. =0

From these the relations which exist between q, 8, &c., Ny, g, &c.
may be found. ' .

The equations of the oscillatory motion may be written

d(P+ d d dH
(TgQ—)—Dd—eQ'_xogn_hn [Zl—g] —uH, —p, [a’@l] —&c. =0,

with similar equations for ¢, ¥, &c.
26. The final determinant written for two variables 6, ¢, and

tvgﬁ geometrical equations G' and H in the notation of Art. 19,
will be
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—
‘Bllm‘ - 'All + 'Eﬂ \ B“m Al’ + Elﬂ

£(Cu=CYm [dG]
a6 dH, 2 L¢
on [T+ F] |, [S]+u ] |

(]

dé dg
Bum'—"Ax +Eu B.m*—A4 )
: Ay —4,+F,
~ (GG m “ae, " df %]

d
7 =O
d 4, 2 s 4y O [d"' :
+2, [7(;_’] + #, [Te’] + *do + do v

(] [wlm | laltlalm | 0|

() [ | [T | o | 0

It will be noticed how very much this determinant is simplified
if the values of A, u in steady motion are zero.

27. Let us apply these equations to the solution of the follow-
ing problem.

" A heavy sphere rotating about a vertical diameter rests in equi-
Librium on the summnit of a perfectly rough surface and being
slightly disturbed makes small oscillations, find the periods.

As the sphere moves about, its centre always lies on a surface
which may be called parallel to the given surface. Let the high-
est point of this surface be taken as the origin and let the axes of
« and y be the tangents to its lines of curvature at O, so that the
equation to the surface in the neighbourhood of O is

'y
z=—}{=+=).

11?(Pl Pz
Let P be the centre of the sphere, PC that diameter which is
vertical when the sphere is in equilibrium on the summit. Let
PA, PB be two other diameters forming with PC a system of
rectangular axes fixed in the sphere. Let the inclination of PC
to the axis of Z, which is vertical, be 6, and let the vertical ‘plane
through PC make with the plane zz an angle 4, and with the
plane CPA an angle ¢. The vis viva 27T of the sphere will then

be given by

T=%@"+y")+3 5 {(¢ + Y cos 6)' + 6 + sin* 6y},
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Let sinf@cosy=§ sinfsiny=9, then we have to the
necessary degree of approximation
Oy’ =En' — nf }
0" + sin’ G‘V::_ gt )"
Also let ¢+ =x. These transformations.of co-ordinates are
all permissible, because they do not involve any differential coeffi-

cients with regard to the time. We thus find if L be the differ-
ence between the kinetic and potential energies

L=;,(m"+y")-+§{x"—x' (&'-nf)+f'+;’"}+%(£+%:)'

If w,, o, o, are the angular velocities of the sphere about
parallels to the axes, the geometrical conditions are

w’—a(w,—m,gl——O

2
,+a( - ._)=o
y =@, -

where a is the radius of the sphere. These equations by well-
known rules reduce to

. —%-}nﬁ'sin«psin 0+ 60 cosr — (¥' + ¢ cos 8) -g =0
2 .
—% — ¢ cosyrsin @ + @ sinr + (Y + ¢ cos 6) -E =0
1
expressing these in terms of our new co-ordinates we have

;Y
a T HE-x o

H=-Y

€
ettty +y Z=0
g " XE+rT X -

The position of the system has now been expressed in terms
of such co-ordinates, that the coefficients in the governing func-
tions L, G, H are all constant. See Art. 2.

The steady motion is given by =, ¥, & 7 all zero, and X =n.
To find A, 4, we may use the equations of steady motion

dL a6 dH
pE A AR AR
where ¢ stands for any one of the co-ordinates. Taking ¢ =« and
g=1yY, we see that A,=0 and g, =0.

To find the oscillation we may substitute in the determinant
and thus form the equation which gives the periods, As most of
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the constituents of the determinants are zero, it will be more con-
venient to form each equation directly from the standard formula

4103 (€] ]

where ¢ stands for any one of the co-ordinates. Taking ¢ in turn

tobe, y,x, £ n we find

1" ® A,
& —g=—=2=0) -
90, @
v_ad _H_p
y-95-3=0
k’xlf =o
BE +x7)+M=0
B —xn)+p= 0

Putting %' =n these with the two geometrical equations are all
linear and ready for elimination.

Eliminating A, s, we have

£+ +;w”—%f=0

N Substituting for £, 9 from the two geometrical equations, we
ave

BE+a , 7 nk* ,

T ==
a Yo~ @Y
lc’+a " Y k[’
— ._-=+__.
y gP @'p,

To solve these put &= X cos (pt +¢) y = Y sin (pt + q) so that -
p is the quantity required. 'We obviously have

@ g Kt
(p * ’+k’m) (p ¥ ’+k’p.) @+#) pp, Y
which is a quadratic to find p*.

If p,, p, have opposite signs the roots cannot be real, and the
steady motion must be unstable. If Pi, P, are both positive, so -
that the sphere is on the swmmzt the motion is stable only if

K g Wa+Vp)

n’>




CHAPTER V.

Certain subsidiary determinants are formed from the dynamical de-
terminant, and # 8 shown that there must be at least as many
roots indicating stability as there are variations of sign lost in’
these subsidiary determinants, and must exceed the number lost by
an even number. Arts. 1—5, and 9.

This is equivalent to a maximum and minimum criterion of stability
with similar limitations. Arts. 6—8,

Effect of equal roots on this test of the stability of the system. Arts,

1
, 11.

Example. Art. 12.

1. In order to test the nature of the roots of the determi-
nantal equation, let us apply a method analogous to that by which
Dr Salmon in his Higher Algebra proves the reality of the roots
of the equation which occurs in the determination of the secular
inequalities of the planets,

2. Let A be the determinant which forms the left-hand side
of the fundamental equation, let A, be the determinant formed
by omitting the p* row and ¢® column. Let A, be the determi-
nant formed by omitting the first » rows and » columns. Thus
A =A,. We then have by a known theorem in determinants

AA,=A A, —AA,.

11728

It has already been noticed that if we change m into —m, the
determinant A is changed into another determinant whose columns
and rows are the same as the rows and columns of the first de-
terminant. It easily follows that the minor — A , is changed into
the minor — A,, by changing m into —m. Hence if

Am =¢ (m,) + myr (m’)}
then By =¢ (m) —myr (m)}*
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Hence the product A,A, is necessarily positive for all negative
values of m’.

It also follows that if A, vanishes for any negative value of m*
then A, also vanishes for the same value of m?.

3. When the determinant A, vanishes, we have

AA, =—-AA,, _
so that A and A, must have opposite signs, or one of them must
be zero, Consider then the series of determinants
A ALA, A, ...

each one being formed from the preceding by erasing the first
row and the first column, We thus have a series of functions
of m" whese degrees regularly diminish from the »™ to the first

- As we may suppose the determinant A to have a row and a column

of zeros added on at the bottom and right-hand side, but with any
positive constant in the right-hand bottom cormer, we may add
to this series of determinants any positive constant. We have just
proved that if any detérminant of this series vanish for a nega-
tive value of m’, the two determinants on each side have opposite
gigns. The case in which two successive determinants vanish for
the same value of m® will be considered afterwards,

‘We may then use these determinants in a manner somewhat
similar to that in which we use Sturm’s functions, provided no two
successive functions vanish for the same negative value of m’.
No variation of sign can be lost as we pass from m*=—o to
m' =0 except by the vanishing of the determinant A at the head
of the series. And when a variation of sign is lost, it will be
regained again at the next root, unless a root of the determinant A,
separates the two roots of the determinant A. If therefore in this
passage from — o to zero, as many variations of sign are lost
as 18 indicated by the highest power of m’, the values of m" found
Jrom the determinantal equation must be all real and megative.
It will also follow that the roots of each of the series of determi-
nants are all real and negative, and that the roots of each separate
the roots of the determinant next above it. If, however, the
proper number of variations of signs be not lost in the passage
from m*=— o to m*’=0, it does not follow that the values of m*
are not real and negative,

4. If the proper number of variations of sign has not been
lost in this passage from m'=-—o to m'=0, this proposition
does not leave us without information as to the nature of the roots.
We infer that the number of real negative values of m* 18 equal
to or exceeds the number of variations of sign lost by an even
number and unless the number of wariations be even the system
18 unstable.



76 THE SUBSIDIARY DETERMINANTS, " [cHAP.

If we do not object to the labour of expanding the determi-
nants, we might extend this theorem to determine the positions
of the negative values of m® as well as their number. The number
of real negative values of m' between m*=—q and m*=—@ is
ecflua.l to, or exceeds by an even number, the number of variations
of sign lost in the series of determinants. In this form the
theorem resembles Fourier's theorem in the Theory of Equations.

5. The converse of this proposition has not been proved.
If in the passage from m'=— o0 to m'=0, the number of varia-
tions of signs 1s unaltered, it is not true that the values of m'
cannot be real and negative. Thus in the simple case

’ —
m =a,, a”um =0,
—a,m  m'—ay,

where a,, a,,, a,, are all positive, no variations are lost, yet if
a,>Va, +Va, the values of m® are real and negative. And if

a,=Va, +Va, the roots are equal and negative. It will be
noticed that the minors in this last case are not zero.

6. In order to discover the meaning of these losses or gains
of changes of sign, it will be convenient to make such changes of
the co-ordinates as will simplify the dynamical determinant as
much as possible. Let us write

&
Vo= (Eu—Au) 9 + (En_ Au) 0¢+

If we now change our co-ordinates by writing for 6, ¢, &c.
linear expressions of some new co-ordinates, we know that we can
clear this expression of all the terms containing the products.
We know also that this can be done in an infinite number of
ways. We thus have

2 2
V,=a, %‘+a”?2‘— +...
where the symbols 6,, ¢,, &c. represent the new co-ordinates.

Again, let us consider the expression

w,=B, L +B 0§ +......

the coefficients are here the values of P, @, &c. in the general
expression for 7, Art. 1, Chap. 1v. when 6, ¢, &c. are all put zero.
But since T' is necessarily positive for all values of £, 7'..., ...
it follows that W, is positive for all values of ¢, ¢'... Hence
by a well-known theorem, we may by a real linear transform-
ation of the variables clear the expression W, also of the terms
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containing the products ¢, ¢, &c. and can make the coefficients
gf the squares any positive constants we may please. We thus
ave

It may be shown that we cannot in general clear the expres-
sion for 7' of all the terms containing 6¢', 5¢, &c. unless C\,— C'£= 0,
&c. by substituting for 6, ¢, &c., any linear functions of other
variables. As this is only a negative result of which no further
use will here be made, 1t is unnecessary to supply the demon- °
stration. '

7. Using these simplifications the determinant A will now
take the simpler form,

A=| m'ta,, a,m, am, .. |=0,
—-am, m'+ta,, am, ...
—-a,m, —a,m, m+a,,
....... vy eeeereeny  eereneenny
where a,,= C, — C,, &c.
If we form from A the series of subsidiary determinants
A A A,...,

terminating with any positive constant, we see that when m®= — o,
these subsidiary determinants are alternately positive and negative,
and when m’=0, they become

Clggenes Boglygeees UygBypere, &,

which are all positive if a,, @,... are all positive. Hence if
@y, G,,... are all positive, the proper number of changes of sign has
been ’fost, and therefore the roots of the dynamical equation A =0
satisfy the condition of stability.

If a,, a,, &c. are all positive, we see that ¥V, is a minimum for
all variations of 0,, ¢,, &c. and therefore for all variations of the
original co-ordinates. If a,,, a,,, &c. are not all positive, there will
be as many variations of sign lost as there are positive quantities
in the series a,,, a,,, &. In this case ¥, is a minimum for some
variations of 6, ¢, &c. and not for others. It is shown in the
appendix to Williamson's Differential Calculus, that n independent
conditions are necessary that a quadratic expression of n variables
should be always positive. These are given in the form of deter-
minants and may be briefly summed up, in the statement that -

Ax+24 .22 +...

2
1" 12771
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is always positive if the roots of

4,+\, A, 4, & |=0,
A, A,+n, 4, | &c
4, 4,, A,+\ &
&e. &c. &e.  &e.

are all real and negative.

8. We may now put the proposition of Art. 3 into another
form. Let L be the general expression for the excess of the kinetic
energy over the potential energy of a dynamical system in terms of
#ts n co-ordinates x,y, &c. this system be moving tn steady

motion with constant values of S, T, &. Then if L be a maci-

mum for all variations of x, y, &c. keeping %%‘ , %{ , &c. unchanged,
then that steady motion vs stable.

If however only r of the n conditions necessary to make L a
maxvmum be satisfied, then the number of roots of the dynamical
equation which satisfy the conditions of stability is equal to r or
exceeds r by an even number. There cannot be stability unless n —r
8 an even nwmber.

If the system be oscillating about a position of equilibrium, |

%‘:, % , &c. are all zero, and this leads at once to the condition,

that the equilibrium is stable if the potential energy is a minimum.

9. In this reasoning, we have for convenience excepted the
case in which two successive determinants in the series A, A , A,...
vanish for the same value of m*. But this exception is of no real
importance, for we may change these determinants into others
whose constituents are very slightly different from those of the
given determinants but which are such that no successive two of
the series have a common root. In the limit, therefore, when
these arbitrary changes of the constituents are indefinitely small,
the roots of the series of determinants will still be real under the
same circumstances as before, and the roots of each will separate,
or cotncide with, the roots of the next above it in the series.

To show that these changes are possible, let us consider the
row of determinants beginning at the last. The determinant A, is
a positive constant, the next A, is m'+a,,. Proceeding thus,
suppose we arrive at two determinants which we may call A, and &
which have & common root. If we now change the constituents
@y, By, By, &c. into a,, + 8ay,, a,+ 8a,,, &c. we do not alter A,, but,
except for the root m*=0, we do alter A in an arbitrary manner.
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When for example a,, is altered, we alter a constituent both in the
first row and in the first column. Since

AN =AA,—AA,,

where A’ is the determinant formed from A by omitting the first
and third rows and columns, we see that when A and A, both
vanish, the product A,A; and therefore by Art. 2 both A, and
Ay must vanish. The determinant A is therefore altered by
— A, (8a,,)’ which does not vanish, since A, is by hypothesis finite
for the particular value of m* under consideration.

If any determinant of the series vanishes when m'=0, it is
clear that one of the quantities a,, @y... must be zero. If we
replace this by any small positive quantity, the argument will
apply as before.

10. Tt is important to consider the effect of equal roots on the
test of stability given in Art. 8 of this chapter.

In this case we know that the roots of the minor A, separate
the roots of A. If therefore A have two negative equal roots, it is
clear that A, must have one of them. In the same way A, Ay,
&c. must also all vanish for this value of m. Since

AN =A_ A, —AA,,
it follows as in Art. 2 if A and A, both vanish, that A, and A,
also vanish. Hence all the first minors of the determinant A
vanish. This is the case considered in Art. 5 of Chap. 1. The
equal roots instead of introducing into the expressions for the co-
ordinates terms which contain ¢ as a factor merely render two of
the coefficients, instead of one, indeterminate.

In the .same way if the equation A =0 is satisfied by three
values of m® equal to the same negative quantity, the equation
A,, =0 must have two of them, and its principal minor must have
one of them. Reasoning as before we see that all the second
. minors of A must be zero. This is again the test that there should
be no terms which contain ¢ as a factor. .

The presence therefore of equal roots does not in the theorem
of Art. 8 affect the stability of the motion.

When a system is disturbed from a position of equilibrium
whether stable or unstable, thre roots of the fundamental determi-
nant are separated by its minors in the manner described in
Art. 8 of this Chapter. By what has just been proved, we see
that if the fundamental determinant have equal roots, whether
positive or negative, these do not introduce into the integrals
terms which contain ¢ as a factor.

4|
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11. The proposition in the last article may be made more
general. If the fundamental determinant be reduced to the form
indicated in Art. 7, we shall show that if A vanish for two equal
negative values of m' which are numerically greater than the
greatest negative quantity in the series a,,, a,,, @,, &c., then
these equal roots will not introduce any terms into the solution
with ¢ as a factor. If a,, a,, &c. are all positive, this reduces to
the proposition proved in the Tast article.

Following the same notation as before, we have
AN = AuAn - AuAsr

If neither A, nor A, are zero, they must have the same sign
when A vanishes for a negative value of m'. For their product
is equal to A A, which has been proved in Art. 2 to be positive.
Hence all the leading first minors, viz. A, , A,,, &c. must have the

same sign for any negative value of m* which makes A vanish.

~ By differentiation we have
dA
am= 2mA, + a A+ oo —a A +2mA, + ... — &e.
But we have also
' A=(m"+a,) A, +amA,+...
A=—amd, + (m'+a) A, +...
&c. = &e.

Hence if n be the highest power of m occurring in A, we have

mgTAt="A+(m’_ 1) Aq"‘(m’"'a‘n) A, — &e.

If then A and 37?‘ both vanish for any negative value of m*
greater than the greatest negative quantity in the series a,,, a,,
&c., we have the sum of a number of quantities all of the same
sign equal to zero. This requires that each should be zero. We
have therefore A, =0, A =0, &. The rest of the proof is the
same as before. ’ :

By differentiating the expression for %ﬁ and substituting for

dA . . . .
—d—":‘ , %’, &c. their values in terms of their first leading minors,

we may extend this proposition to the case in which the funda-
mental determinant has three equal roots, and so on.
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12. A sphere v8 suspended by‘a string OA from a fized point
O, and 1s set rotating about a vertical diameter whicfzi‘z in the
same straight line as the string with an angular velocity n. A

.small disturbance 18 given, determine if the steady motion 18

stable.

Let O be the origin, and let the axis of z be vertically down-
wards, let lz, ly, | be the co-ordinates of 4, the point at which the
string is attached. Let C be the centre, and let af, an, a be the
co-ordinates of C relative to 4. Then, exactly as in Chap. 1v, Art.
22, the Lagrangian function may be shown to be

L‘=—I;:{x' —%’—I-I-\%’-')‘+ f"+q"’} .

+4 (@ + W)+ jon + 1) —g Y +a 55T
the mass being taken unity.

Putting ¥’ =n, &, v, &, ¥ all zero, we see that' L is a maxi-
mum when z, y, § 7 are zero, the steady motion is therefore stable
for all values of n, ' :

If we put k* =} a’, and m*=— ", so that , y, &c. are all repre-
sented by terms of the form 34 cos (M +a), we may, by the
methods of the last chapter, prove

(x'—-g)(x'inx— %‘ =3

. This equation, whatever may be the sign of n, has two pesitive-
and two negative roots. All four give stable oscillations,

R. A. 6



CHAPTER VI

If the energy of the system be a maximum or minimum under certain
conditions, the motion whether steady or not is stable. Arts. 1—3.

When the motion is steady, it will be also stable if a certain function of
the co-ordinates called V + W is a minimum. Art. 4.

If there be only one co-ordinate which enters into the Lagrangian function,

© except as a differential coefficient, this condition i8 necessary and
sufficient. Arts. 5, 6.

Additional conditions when there are two co-ordinates, Art. 8.

1. When a system is oscillating about a position of equilibrium,
it is well known that we may determine the stability or insta-
bility of the equilibrium by what we may call the “energy crite-
rion,” This criterion may also be sometimes used when the
system is oscillating about a state of steady motion.

Let E be the sum of the kinetic and potential energies of the
system. Then throughout any motion of the system we have
E=h,

where % is a congtant depending on the initial conditions. If 6, ¢,
&c. are the co-ordinates of the system, E is a known function of
6,6, ¢, ¢', &c. Suppose that some of the other first integrals of the
equations of motion are known. Let these be

F,(6,0,$, ¢, &)=C,
F, (6, 0,¢, ¢, &) =0,
&e. )
the time ¢ being absent.

For the purposes of this proposition let us sup 0,8, ¢,9¢,
&c. to be separate variables unconnected with each other except
by the equations just written down.

If £ be an absolute maximum or an absolute minimum for
all variations of 6, &, &c., those corresponding to the given motion
making K constant, then that motion 1s stable for all displacements
which do not alter the constants C,, C,, &c.
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If this proposition be not evident, it may be proved by elimi-
nating as many of the letters as possible. If 6, €', &c. be the re-
maining co-ordinates we have

E=f(6,6,&.C, C,...).

Let & be the value of E in the given motion, and let the
system ‘be started in some slightly different manner so that

E =h+3h.

If E be a maximum along the given motion, then any change
whateverin 8, &, &c. decreases E. Hence 6, 8', &c. cannot deviate
so much from their values along the given motion that the change
in E becomes greater than Sh.

2. Let us apply this principle to a system of bodies which
moves in steady motion with some co-ordinates 6, ¢, &c. such that
their differential coefficients @', ¢', &c. are constant, and the re-
maining co-ordinates £, 7, &c. themselves constant. Let us further
suppose that the energy is a function of &, ¢', &ec., but not of
0, . By Lagrange’s Equations we have the integrals

aT aT
(E:= 01, (T¢’_ 0’, &e.
It is clear that the system can describe any one of a number
of steady motions, which we have already" called parallel motions,
and which are determined by

O=p, ¢=gq &e
f=a, - =2, &c.

where p, q, &c. a, 8, &c. are constants which satisfy all Lagrange’s
‘equations.

We have thus as many relations between these constants as
there are co-ordinates £, 7,.&c. Let the system be started with
any initial conditions we please, then the constants C,, C,, ... are
given. These being known we have as many relations between
the constants of steady motion as there are co-ordinates 6, ¢, &c.
The steady motion is tgerefore determined. If the energy of this
initial motion is nearly equal to that of this steady motion, and
if it be a maximum or minimum as explained above, then the
system will never deviate far from its corresponding position in
the steady motion, and this steady motion may be called stable.

.3 Example. A top is set spinning on its point on a perfectly
rough horizontal ground, with its axis inclined to the vertical, find
the condition of stability.

Let 6 be the inclination of the axis OC of the top to the
vertical 0OZ; ¥ the inclination of the plane ZOC to a vertical

6—2
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Elane fixed in 8pace, and ¢ the inclination to a plane through OC
ixed in the body. Let O be the apex, G the centre of gravity
which lies in OC,h=0@G. Let 4, A, C be the principal mo-
ments of inertia at 0, and M the mass of the top. '&’e have then

B (g + ¥ con ) 45 (0 +5in'04™) + Hgh cos 6.

By Lagrange’s equations we have the integrals
¢+ cosf=n,
Cn cos 0+ A sin* 0y’ =m,

where n and m are two constants, the former representing the
angular velocity of the top about its axis, and the latter the
angular momentum about the vertical. If we now eliminate
¢’ and 4" we find that £ is a minimum when 6 = g, if

C*n* > 4MghA cos a,
which is the result given by other methods.

4. The theorem of Art. 2 may be put into another form.
Let the kinetic energy be

a!
T= Too?ﬁ- T“0'¢’+ 0or

Then since 6, ¢, &c. are absent from the coefficients, we have
the integrals o
Tl + Tosd + <o = C,— Ty — Tom' — &e.
T.,O’ + T“¢,+ sees = 03— T“&J - TM'D)' - &e.

&c. = &c.
For the sake of brevity let us call the right-hand sides of these _
equations 0, — X, C,— Y, &c. Since I'is a homogeneous func-

tion of ¢, ¢/, &c., we have, as in Chap. 1v. Art. 21,
I'= ng§2—’+T¢,£'\n'+ .o

+30 O+ X)+3 ¢ (G+ ) +...

If we substitute in the second line the values of &, ¢, &c.
found by solving the linear equations just written down, we have
the determinant

- 0, C+X C+7, &e
O-X Tw Top &c.
C,-Y, Ty Ty &

& - &e. &e. &

1
24
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where A is the discriminant of the terms in 7' which contain &', g:,
&c. This determinant is unaltered by changing the signs of X, Y,
&c. and i8 a quadratic function of C,, C,, &c., X, Y, &c. Hence
the terms C, X, C,Y, &c. do not oceur, If then we put

W=-|0 ¢, 0 & |o
C. Tow T &c.
0', TM’ T“, &e.
o & & &

we have
T=ng§2-’+Bhgﬂ'+&c.+ W,

where By, &c. are independent of C,, C,, &c. Now T'is essentially
positive for all values of the variables, and therefore for such as
make C,, C,, &c. all zero, Hence the terms involving &', 7', &c.
are together a minimum when £, 7/, &c. are all zero. The coeffi-
cients By, &c. may all be treated as constants since &', %/, &c. are
all small quantities.

If V be the potential energy, we have therefore the following
rule. If W+ 'V be a mintmum for all wartations of E, n, &c. then
the steady motion 18 certainly stable. It.should be noticed that
W+ V is a function only of £, 9, &c. the co-ordinates which are
constant in the steady motion.

5. If the energy be-a function of one only of the co-ordinates,
though the differential coefficients of all the others enter into tts
value, this condition s sufficient and necessary.

Let £ be this co-ordinate. Then by vis viva we have
]
Bg;% + W4+ V=h

Differentiating we have

Beef"-l‘d(—n;;e‘l.ﬂ"o'-

This equation must be satisfied by the steady motion repre-
sented by ?;‘=a. The second term M‘%—V)
vanish when £=a, so that W+ ¥ is a maximum or minimum.
To find the oscillation let us put £=a+ x, we find

By m2~’ + [ﬁ%’gﬂ} z=0,

must therefore
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where the square bracket implies that £ is to be put equal to a
after differentiation, By the same reasoning as before B, 1s
necessarily positive, and the motion will be stable or unstable ac-
cording as (%; + V) 18 @ minimum or mazimum, ,

6. If we refer to Art. 21 of Chap. 1v. we see that this function.
W + V is the value of the modified Lagrangian function L’ when
£, n', &c. are all put zero, and the sign of the whole function
changed. It therefore follows by Chap. v. that when W+ V is a
minimum the steady motion is stable. The “energy criterion of
stability,” as far as it applies to steady motion, may therefore be
deduced from that given in Chap. v. Art. 8. But the mode of
demonstration adopted in that chapter gives us more information
as the nature of the motion, while the modes of application to
examples of the two criteria are quite different. The energy
criterion may also be sometimes applied to determine the stability
of a motion which is not steady.

. [The relation between the theorem in this Chapter in which
E=T+7V is made a minimum to that given in Chapters 1v. and v.
in which L=T7T-V is made a maximum may be more distinctly
perceived by the following statement.

Let , y, &c. be the co-ordinates of the system, and let L be
the Lagrangian function* so that L = T'— V, then by Art. 3 of
Chap. 1v. the co-ordinates in steady motion satisfy the equations

dL drL

%=0 =0 & (D)

Here L is expressed as a function of «, y, &c. &, ¥/, &c.

Suppose some of the co-ordinates as 6, ¢, &c. are absent from
the expression for L, so that L is a function of &, ¢’, &c., the re-
maining co-ordinates, viz. §, 7, &c. and their differential coefficients.
Then if we form the modified Lagrangian function as in Art. 21
of Chap. 1v. the equations (1) of steady motion become

' ar’ _ 0 ar’ _
dE — 7 dy

Here, as in the Hamiltonian equations C,, C,, &c. are the
6, ¢, &c. components of momentum, and L’ is expressed as a
function of C,, C,, &c. &, 7, &c. £, %', &c.

* Let u, v, &c. be the z, y, &c. components of momentum, so that u=g, &e.

and let # be the Hamiltonian function. Then H=T+ V and we easily deduce
from the Hamiltonian equations that, in steady motion, )

dH_ dll

de~ ’ dy

Here H is expressed as a function of z, y, &e. u, v, &c.

=0, &c.
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But L=T-C0~-C¢ —&c.-V

aTr,  dT ,
=‘T+a?5+7i,7” +&e. -V,

by Euler’s theorem on homogeneous functions. In steady motion
£, 7/, &c. all vanish, hence the equations (2) become

dW+7V) a(W+7V)
———dg——-—(), —"——‘——dn —0, &0
where W is the value of T' when £, %/, &c. are all put equal to
zero. Here W is expressed as a function of C,, C,, &c. §, 9, &ec.

It is shown in Chap. v. that if the Lagrangian function ex-
pressed as required in equations (1) be a maximum the motion
1s stable. It 1s shown in this Chapter that if the function W+ V
be a minimum the motion is stable.]

7. To find the condition of stability when the Lagrangian
JSunction is a function of two only of the co-ordinates, though the
differential coefficients of all the others enter into its value.

Let & n be these two co-ordinates, then the modified Lagran-
gian function as explained in Art. 20 of Chap. 1v. will be a func-
tion of & #, £, 7" only.

Let the steady motion be given by £=a, n =4, with the
corresponding values of the other co-ordinates 6, 3, &c. Then a
and B are constants. Let £ =a +a, =8+, and let us expand
the modified Lagrangian functior in powers of #, y. Neglecting
the terms of the first order, as they only give the steady motion,
let

g /9
L'=B, 5 + By + B

4,5+ Ay + 4,7

+ Cyzx’ + Cozy’ + Coya’ + Cuyy'.
Also let E= C,— C,. Then the condition of stability is that
the roots of the following equation should be of the form 8.4/=1. -
Bm'—A4,, Bm'—A,+ Em |=0,

v B.m'—A,—Em, Bm*—A4,

If A'=B,B,- B/ }

: A=A4,4,-47)"°

and ®=4,B,+ 4,B,-24,B,
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be the two discriminants and the other invariant, this leads at
once to the conclusion that the motion is stable only when

(1) A is positive,

(2) E’— O is positive and > 2 VAL, -

If Aug + Ay + A,%’ is a maximum when  and y are zero,
the two conditions are obviously satisfied.

This condition may be otherwise expressed ; if I’ bo the modi-
fied Lagrangian function, a steady motion is given by
‘ dr’ dr’ .
®=0 3 =0 £=0 7=0.
This motion will be stable if for the values of §, 9 thus found,
ar '’ dr

(1) Ti_? —d—”,— —m’ is pOSitiVG,
@ (ZL- LY ELOL ILer o on o)
dédn’  dEdn/ |dE dn® " dy” df* dfdndEdy
is positive and greater than

dE " dEdn) " \dET dy*  dfdy]

8. The nature of the motion when thus reduced to depend on
two co-ordinates may be illustrated by geometrical reasoning. Let
the position be defined by two co-ordinates #, ¥ which are zero
along the steady motion. Let these be regarded as the co-

her the motion of

9 {d’L’ 'L d’L’}& {d‘L’ 'L’ d'L }l

P exactly represents that of the system.

Let us construct the conics

2
An§+A,,wy+A."L=a,

2
B.Z + Bay+ B, =0,

Then, exactly as in Arts. 11—14 of Chap. 1v., it will be found
oconvenient to transform the co-ordinates by writing

r=a,p+ bﬂ}
y=a,p+bg
If u be the modulus of transformation we have u = a,b, —ab,.
It is easy to see by actual substitution, if £’ be the difference of
the coefficients of pg’ and p’g, that
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If the transformation be from one set of oblique co-ordinates
to another, let w, o' be the angles between the axes, We then

have
FL.E
sinew sno'
Transforming the axes to the common conjugate diameters, the
conics become

] 3
4,5+ 4, % =a)

2 ’
B2+ BT =b}
>
the signs of a and b being such as to make these conics real. The
equation to find m becomes

(Bym*~ 4,)) (Bym* — 4,)) + E'm =0,

It is therefore necessary for stability that the conic a should be an
ellipse as well as the conic 5, It is also necessary that

_i'_> 'AII.I + ﬂtj
v Bh, n'. '—B: B”’ ’

both roots having the same sign and the inequality being nu-
merical.

Let OP, OP'; 0Q, OQ be the common conjugates of the two
.conics, this condition then becomes

E area ofconi'cb>2Q+_0+Q'
sine’  gab OP " (OFP°

When the system describes an oscillation with one period, ¢.e.
an harmonic oscillation, the path of the representative particle is
easily seen to be

(B/m'—A,") p* + (B, m'—4,") ¢ = constant.

The harmonic paths are therefore ellipses. It also appears that
the two ellipses which represent the two harmonic vibrations and
the two ellipses @ and b have, all four, a common set of conjugate
diameters.
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Any small term of a high order, if its period is nearly the same as that of
an oscillation of the system, may produce tmportant effects on the
magnitude of the oscillation. Art. 1.

Origin of such terms, with an example. Arts. 2—3,.

Supposing the roots of the determinantal equation to satisfy the conditions
of stability to a first approximation, yet if & commensurable relation
hold between these roots it is nacessary to examine certain terms of the
higher orders to determine whether they will ultimately destroy the
stability of the system. Art. 4.

If a certain relation hold amonyg the coefficients of these terms, they will

not affect the stability of the system, but only slightly alter the periods
of oscillation. Arts. b—1.

Emmlee the first taken from Lagrange's method of finding the oaczlla,-
ttons about a position of equiltbrium. Arts. 8—9,

If the coefficients of the equations of motion should not be strictly con-
stant, but only nearly so, the stability will not be affected, unless the
reciprocals of their periods have commensurable relations with the
reciprocals of the periods of oscillation of the system. Art, 10,

1. If we understand that a motion is called stable when #ny
small disturbance does not cause the system to deviate far from its
undisturbed motion, 1t is clear that we cannot be certain of the
stability without examining the terms of the second order. It is
possible that some of these may have their periods so timed that
their effects may accumulate until the motion is changed.

Returning to the equations of Art. 3, Chap. I. we shall have on
the right hand instead of zero, a series of small terms of orders
higher than the first. To find a second approximation, we substi-
tute the values of «, y, &c. given at the end of Art. 3, in these
terms,

They will therefore take the form Ne* and will produce in
a, y, &c. terms of the form 1\2 ¢*, where N' is of the same order
at least as the term considered, and f (m) has the same meaning as
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in Chap. I. These will have-to be expressed in trigonometrical
real forms, but it is unnecessary to exhibit the process, for we see
at once that no small term or force (whatever it may be called) of
a high order can affect the stability of the motion unless it makes
f(n) very nearly or exactly equal to zero. In this case its period
18 very nearly or exactly equal to one of the periods of the motion
given by taking terms of the first order only.

A remarkable use of this principle was made by Captain Kater
in his experiments on the magnitude of gravity. It-wasimportant
to determine if the support of his pendulum was perfectly firm.
He tells us that he had recourse to a delicate and simple instru.
ment the sensibility of which was so great that had the slightest
motion taken place in the support it must have been instantly
detected. The instrument consists of a steel wire the lower part
of which, inserted in the piece of brass which serves as its support,
is flattened so as to form a delicate spring. On the wire a small
weight slides by means of which it may be made to vibrate in the
same time as tge pendulum to which it is to be applied as a test.
When thus adjusted it is placed in the material to which the
pendulum is attached, and should this not be perfectly firm its
motion will be communicated to the wire, which in a little time
will accompany the pendulum in its vibrations. This ingenious
contrivance appeared fully adequate to the purpose for which it
was employed, and afforded a satisfactory proof of the stability of
the point of suspension. See Phil. Trans., 1818.

2. Since the term Ne™ is obtained by compounding the
different terms in the values of a, y, &c. it is clear that

n=pm, +qm,...
where p, ¢, &c. are-positive integers whose sum is the order of the

term. It is therefore only when the roots of the dynamical equa-
tion f (m) = 0 are such that a linear relation of the form
pm, + gm, + ... =m, very nearly

exists between them, that we may expect to find important
terms among the higher orders. The order of the terms to be
examined will be p+ ¢+ ..., and unless this be also small, the terms
will probably remain iusigniticant. If the root m, should occur
twice in f'(m) =0 it is clear that the divisor f (n) will be a small
quantity of the second order, and the term may be said (as in
the Lunar Theory) to rise two orders, :

3. To take an example, let us suppose a particle to be describ-
ing an ellipse about a fixed centre of force in.one focus. If dis-
turbed it will describe a slightly different ellipse. Since

r=a{l —ecos (nt + e — o) +...}, ‘
O=nt+e+2esin(nt+e—o)+...
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we see that a slight change in the elements will cause variations
in 7 and 0 of the period 2, an additional variation in @ of the

form tn + 8¢ and an additional variation in r of the form 8a. All
these variations should by Art. 3 of Chap. I. be indicated by
expressions of the form
r=3Me™, 0=3M'e™,
where the values of m are the roots of the equation f(m)=0.
The roots therefore of the equation f(m)=0 for & are m=0
"and +nV =1, and for 8 are m =0, 0 and + n¥ —1. We there-
‘fore infer that any small disturbing causes of the second order
whose periods are nearly equal to that of the particle, will cause
important inequalities in both & and 86, and (since f (m) =0 has
two roots equal to zero) any term of long period will rise two
orders in &6.

4. If the roots of the subsidiary equation are such that the

relation
pm+ gmy+ . =m, .

holds accurately, the solution changes its_character. We have
now in the value of x a term of the form Unless the real
part of m, is negative, this indicates that the system will depart
widely from the motion which we took as a first approximation.
‘We must therefore modify our first approximation (as in the Lunar
Theory) by including in it the terms which produced these im-
portant effects, We may then enquire how far this modified first
approximation indicates that the motion is stable or unstable.
When these terms are included the equations to be solved are in
general no longer linear, and it is sometimes impossible to find a
solution sufficiently accurate to serve as a first approximation
throughout the whole motiom,

5. In some cases, however, the oscillations may still be
represented by expressions of the form
’ w=Me" + Me™+ ...
y=M'e" + M)e" + ... ‘
&e.,
where the values of n, n,... differ but slightly from the roots of
the equation f(m) = 0. Let us investigate the eondition that this

should be true, and also determine whether the changes in the
values of m,, m,... are sufficient to affect the stability,

Suppose that we have completed our first approximation, and
find on proceeding to a higher approximation that the terms
' Ne™ + Ne™' + ...
Nje™ + N/e™ + ...
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present themselves on the right-hand side of the first set of
equations in Art. 3, Chap. . These terms are supposed to have
arisen from several relations of the form

pm+gmy+ ... =m,.

If these terms can be included in the first approximation by
writing n,, n,, &c. for m,, mg, &c. we have, by substitution in the
differential equations, certain equations connecting n, M, M’, &c.,
whose left-hand sides are the same as those used in Art. 8 with
n, ‘written for m , but en the right-hand sides we have instead of
zero the. quantities N,, V), &c. The test of the success of the
process is that these modifications in the values of m must satisfy
the same relations as before.

Now N, N/, &c. are all at least of the second order of small
quantities, hence up to terms of the first order the ratios M,, M/,
&e. will be the same as before, so that we may put

My=La, M/=Lp, &e.,
following the same notation as in Art. 3, Chap. . We also have
M, f(n) = N+ Nja,/ + ...
Let n, =m, + dm, we find
om. = N+ Vo' + ...

S (m) La,
Similarly Mo
_Na,+Na/ +...
== ) Ly
&e. = &e.

It is evident, by the theorem of determinants alluded to in
Art, 3, that these are symmetrical expressions,

6. We may conveniently express these results in the form of a
rule. :

Suppose we have to a first approximation
z=Me™ + Me™ + ...

Eliminate from the differential equations all the variables except
« in the usual manner. This may be done by performing on the
several equations the operations represented by the minors g, o/,

&c.,‘% being written for m. Let the equation thus found be

f (c%) x=Fe" + Pe™...
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Then all these terms can be included in the first approximation,
provided

P, P,
=t om, = 22— &e.
_ M= iy O™
satisfy the relations
pom, + gdmy+ ... =8m,,

&e. = &e.
which exist among the roots of the dynamical equation.

7. The general results we have arrived at may be summed
up as follows. Though some of the terms of the higher orders
may affect the magmitude of the oscillation, yet no term will arise
to affect the stability of the motion unless there be some relations
between the roots of the dynamical equation of the form

pm, +gmy + ... =my,
where p, ¢, &c. are all integers. Even if such relations occur, the
lowest order of the term is p+g¢+..., and if this be considerable
the term will not produce any important ‘effects until a con-
siderable time has elapsed. If a certain relation, just found, hold
among these terms, their only effect is slightly to modify the
periods of oscillation, without altering the type of motion.

8. As an example, let us consider a system of bodies to be
oscillating about a position of equilibrium. We know by Lagrange’s
general solution, that the equation f(m)=0 is of ah even order.
Its roots are of the form

m,=aN—1, m=—aV—1, m=BV-1, &c.
Whatever the numerical values of these may be we have
m,+my+m,=m,  m,+m+m,=m, &c.
so that the small terms of the third, fifth, &c. orders might affect
the stability of the oscillation. But we shall now show that they

only affect the periods of oscillation, and not the stability of the
system. :

Since both sides of Lagrange’s equations must be of — 2 di-
mensions in time and the impressed forces are also of —2 dimen-

sions, it is clear that these terms must consist of powers of «, y, &c.

%,—?, a‘g , &c. and products of an even number of factors of

%, %‘Z , &. We know also, by Lagrange’s solution, that the

co-ordinates take the form

x = M, cos (at + \,) + &c.
y= M/ cos (xt+n) + &e.
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. . d
The minors a, a’, &c. are also all even functions of a7 hence

the equation found after elimination is of the form
f(dit) @#=P cos (at + \) + Qcos (Bt + p) + ...
Replacing a¥—=1, —a¥—1, &c. by m,, m,, &c. we find by
. 6, '

tO2M,f (m)’ 2M.f'(m,)*
Since f'(m) is of odd dimensions, and m,=—m, we clearly have
Om,=—&m,, and therefore the test is satisfied.

8m 8‘”!. ==

9. [As another example let us apply the rule of Art. 6 to
some very simple case which will involve no algebraical substi-
tutions of any length,

The motion of a simple pendulum under the action of gravity
may be made to depend on the equation

where a and 8 are two constants and x is the inclination of the
pendulum to the vertical which is supposed to be small. The first
approximation to the motion is

x=Memt + Memt.....ccovvnveniennnn. (2),

where m, and m, are the roots of the equation m*+a*=0. Our
object is to ascertain by help of the rule given in Art. 6 whether
the small force represented by Bz* renders this first approximation
unstable or merely slightly alters the numerical values of m, and

my.

The two roots are connected by the relation
My+Mg=0.0eirirnienniiiiniiniiinen 3.

Substituting the value of  on the right-hand side, we have
(Z—;+a’) o=38 MM, (M ot 4+ Mo™) + &.
Hence by the rule in Art. 6
_8BM'M, ~ _SBM M}
8m, = 2m,}}[ R " om, = 2m,lM,’ )
These clearly satisfy the relation
Sm, + &m, =0,
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and therefore the first approximation taken above, so far as the
disturbing force Bz® is concerned, is stable,

X .
If the small force had been B (%%’) instead of B2 it is easy
to see in the same way that

36M Mymm, _ 38 M mm
2m M, ST 2 M,

so that the relation 8m, + &m,=0 would not have been satisfied.
The first approximation taken above is therefore not sufficiently
accurate to serve as a first approximation throughout the motion.

In this example we have considered the effect of a small force
of the third order in disturbing the stability of the motion given
by equation (1). The same equation will obviously occur in many
other cases of motion. For example, let a particle describe a cir-
cular orbit about a centre of force situated in the centre. If
s{ilglhtly disturbed the equation giving the disturbance # in the
radius vector takes the form

LA SN T

om, = , ©Om

where a, 8 and ¢ are constants, Similar remarks will therefore
apply to this case also.]

10. When the coefficients of the equation of motion are not
strictly constant, but yet do not vary much, then we may transpose
the small variable parts of these terms to the right-hand side of
the equation, and treat their products by the differential coeffi-
cients of the co-ordinates as small quantities of the second order.
Suppose the variable part of one of these coefficients to be p sinnt,
where p is small, and let f(m)=0 be the equation giving the
periods of oscillation of the system when the coefficients are taken
constant. Then it is clear that unless n is nearly equal to the
sum or difference of two values of m, this term cannot rise into
importance. On Xroceeding to higher orders we see that these
terms cannot produce important effects unless some commen-
surable relation between m and the roots of the equation f(m) =0

. should be very nearly satisfied.

11. It should be remarked that when the coefficients are not
constant it is not a sufficient test of stability that they should
always satisfy the conditions of stability obtained by giving them
their instantaneous constant values. Thus if the equation of
motion were :

dz 1

7 +4—t,w=0,,
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the coefficient of @ is always positive, yet as the equation is satis-
fied by  =a 4/t, x may become as great as we please.

Even if the coefficients are nearly constant, we must yet ex-
amine, by the rules just given, if their small changes are so timed
as gradually to increase the oscillation until the divergence from
the given motion is no longer small. ' :

[Suppose & system to be oscillating so that its motion is de-
termined by the equation :

%f+qa:so,

where ¢ is a known function of f, which during the time under
consideration always lies between 8* and 8™ the latter being the
greater. Let the system be started with an initial co-ordinate z,
and an initial velocity x, in a direction tending to increase z.
It may be shown that the system will begin to return, ie. & will

4]
begin to decrease before & becomes as great as /= + %,  If
+m, Fm' be two successive maximum values of a, we may also
show that m’ cannot be so great as %m, and that the time from

. f ™
one maximum to the next lies between - and

w
gendgl

RQ Al
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CHAPTER ' VIIL

The Hamiltonian Charactoristio or Principal functions when found deter-
mine at once the molion of the system jfrom one given position to
another, and whether the motion s stable or unstable. Arts. 1—3.

Ezamples with & mode of effecting the integration S = det in small oscil-"
lations. Arts, 4—17,

The Characteristic function supplies the condition that the motion is stable
as to space only, while the Principal function gives the conditions that
¢ 18 stable both as to space and time. Art. 8,

 In what sense the motion is unstable if either of the two Hamiltonian
Junctions 48 a minimum, Arts. 9—14.

1. If we had any convenient methods of finding the Hamil-
tonian Characteristic or Principal function, we might determine
without difficulty the conditions of stability of a dynamical system
at the same time that we deduce the integrals of the equations of
motion, But it is very difficult to discover either of these func-
tions by an @ priort method. We have indeed differential equa-
tions which they must satisfy, and Jacobi has taught us what kind
of solution will serve our purpose. But the difficulty of finding
these solutions is as great as that of solving the equations of
motion. For these reasons it does not seem necessary to dwell on
the uses of these functions,

2. Suppose the Principal function S of a dynamical system to
have been found in terms of the initial co-ordinates 6, ¢, and the
co-ordinates 6, ¢ and the time . Let the semi-vis viva_be given
by

_pb? , ¢
T—P7+Qc9'¢ +R§,
where P, Q, R are known functions of 6, ¢. Let P,, Q,, R, be
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the values of these, when 6, ¢, are written for 6, ¢. The final
integrals of the equations of motion are then given by

ds , '
- d_a.' = Poeo + Qo¢o
ds , A
- T% = Qoao + Ro‘l’o

Let the system receive any disturbance at the time £=0, so
that while starting from the same initial position, its initial ve-
locities are slightly altered. Let @,, y, be these initial changes

of 6 and ¢, and let O+, ¢ +y be the co-ordinates of the
system at the time ¢&. Then we have

a8 a8

~ B0 doapy =T + Qe
&S P8

Wby Riabry i Q) + By,

Here ), y,' are small arbitrary quantities, hence 2 and y will

. . &8 d*S a'S a8
b 1
e small if none of the ratios of T35 W dp® dgdo’ or pry ey

to the determinant

&8 &Y &Y &8
0,40 d.dp ~ dodd dpdd’

be large,

If the initial position as well as the initial motion be altered
we may find, by a precisely similar process, the conditions that
z and y should be small. If the system have moré than two inde-

pendent motions, we have more than two co-ordinates, but the
conditions of stability are found in the same way.

3. If # and y be small throughout the whole motion from the
one given position to the other, not only does the system not
deviate far from its undisturbed course, but the system at any
instant is also very nearly coincident with its undisturbed place
at the same time. It is important to notice this, for the word
“ stability ” is sometimes used in a different sense.

This condition of stability may be put under a form in which
no reference is made to S. Let u and v be the components of
momentum of the system corresponding to the co-ordinates 6, ¢

respectively, . e. let U=g v=Z—i’;, and let these be expressed
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as functions of 6, ¢,, 6, ¢ and ¢. Then the preceding equation
may be written

46, "7 38, Y =
du dv ’
— T t—y=
ag," T ag,y=#

where a and 8 are small arbitralgr quantities. The condition of
stability is that the values of # and y thus found should be small.

4. As an example let us consider the case of a projectile.
If @ be the horizontal, and ¢ the vertical co-ordinate of the par-
ticle, we have

0 — 0 2 — 2

5=t B8 sa4+4) —fhy‘t’}.
T=} (0" +¢")

The equations to find  and y are evidently

1,
-t-ac—a'o

1 A
'z.’/:yo

Hence the system continually deviates more and more from its
undisturbed place. .

5. In order to calculate the form of 8 when a systemis oscil-
lating about a state of meotion, it is convenient to choose as co-
ordinates some small quantities #, ¥ which vanish in the given
state of motion. Let the Lagrangian function be written in the

form
L=L,+L+L,

where L, is a ht;mogeneous function of x, y, «, ¥'. Then by a
theorem of Euler’s

p=2+3 (Gt o) +13 (s ),

where the 3’s imply summation for all co-ordinates.
As in Art. 9 of Chap..1v. we have
4dL,_dl,
, T dtde T dz*
and the oscillations are given by

4L, _dz,
dt do’ ~ dz *
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Hence we find

L=L.,+2( o(liillal:'“’ )+1}2( z‘$+ ‘Zj)

Integrating we have

§=[Lae+3 [ ]+§z[ l,

Thus the integration has been effected, but in order to express
Sasa function of =, ¥, @, y and ¢, it will be necessary to find
x,, ¥,, , y in terms of these quantities.

6. As an example, let the position of the system depend on
one co-ordinate z and let

L=L,+ Az + Bz +4% A"+ % Ba*+ Car,
where the coefficients are all constants. We then find by the
process just indicated that A, =0 and
S8=Lt+ B, (x—x,) +—"~'(w’ -z

B, (&' +&,) (€™ +e-™) — m
et — g-mi

where m* = é—“ . Applying the criterion of stability we find that

d’S 1

drdx
fore unstable or stable according as A4,, B, have the same or
opposite signs,

will finally become small if m is real. The motion is there-

7. If the position of the system depend on two co-ordinates
x, ¥, let

L=L+Ag+Ay+Ba +By
+3 4,2+ A, oy +§ 4y" +4 Bua” + By +§ By
+ Cyet’ + Oy’ + Oy’ + Cpyy' :

We then find
S=Lt+ B, (x—=)+ B, (3/ %)
9,0
+0, 255+ SOy g 4 0,55 o,
where

’ ’ B ’ / ’ ’ B ’ r
c=%‘ (v = 2y2y) + 5 (39 + &Y =aYs =& Yo) + 5" (Y = Yfo)-
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If we now express , ¥, #,, ¥, in terms of , y, x,, y, and ¢, we
find for o a fraction whose numerator is a homogeneous quadratic
function of @, y, @, ¥, the coefficients being linear functions of
exponentials of ¢, and whose denominator is another linear function
of the same exponentials. These exponentials become sines and
cosines when the motion is stable. Thus when the given motion
is steady the simplest inspection of the form of o will determine
whether the motion is stable or not.

Referring the motion to principal co-ordinates for the sake of
brevity, and writing 2G'= C, — C,,, we find that o must satisfy
the differential equation -

do 1 (do ', 1 (do .
%+m ((E+Gy) +§—B; (3;— Gw) =}d4,2+ A0

This equation is obviously satisfied by such a function as that
just described. The solution of this equation may be reduced to
linear equations and thus o may be found. But it is unnecessary
to dwell on this, for this would be equivalent to returning to the
Hamiltonian equations.

8. If we wish to determine the condition that the general
course of a dynamical system is stable without requiring it should

‘be near its undisturbed place at any the same time, 1t is more

convenient to use the Characteristic function. Suppose that the
Characteristic function has in Jacobi’s manner been expressed as
a function of the co-ordinates 0, ¢, the constant A of vis viva and
two arbitrary constants a,, @, Then

V=f0, ¢ h a)+a,
The relation between 6 and ¢, which may be called the equa-
tion to the path of the system, is given by :
. av_,
da, ¥ ,
where b, is another constant. Let the system be disturbed from

the same initial position so that the whole energy is unaltered.
The change in ¢ corresponding to any given value of 0 is found

from PV, @V
EGT: Sat + W 8¢ = 8?".
e e &V
Let A be the tnitial value of o’ then
) 1
ev_,
da,
Sp= -z da,.

dadd
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The condition that the path should be stable is that the coeffi-
cient of 3a, should not be large.

We might also use the function called @ by Sir W. R. Ha-
milton, but it seems unnecessary to dwell more on this subject.

9. The instability of a system may be deduced from the
Hamiltonian Principal or Characteristic functions, expressed as a
minimum. Suppose a dynamical system to move from one posi-
tion 4 to another B in a time ¢, then the motion may be found by

making the first variation of 8= f Ldt equal to.zero, the time of

0
- transit being constant. The constants of integration are deter-

mined by the conditions that the co-ordinates have given values
when ¢=0and ¢=¢ To determine whether § is a maximum or
minimum or neither we must examine the second variation and
here we have the assistance of Jacobi’s rule. The determination
of the constants will depend on the solution of equations and may
lead to several different kinds of motion from ‘A to B. One of
these will be the actual motion. Let us move B along this until
one of the other motions coincides or as we may say approaches
indefinitely near to this actual motion. We have then reached
a boundary beyond which the integration must not extend if S is
to be a maximum or minimum. See Todhunter’s History of the

Caloulus of Variations, page 251. Further (%{—i, if @ be a co-

ordinate, is positive throughout the limits of integration, so that
S will be a minimum and not a maximum.

10. When there are several co-ordinates 6, ¢, &c. which are
to be found as functions of the time, we may easily show that
Jacobi’s condition is a necessary one, and this is all that we require
for the next proposition. If the system can move in two ways
from A to B, then 88=0 along each, and therefore when these
two are adjacent we have both 8S=0 and 8(8+8S)=0. This
shows that the second variation can be made to vanish by taking
one variation through the other. This second variation will then
be the same as the quadratic term of the series obtained by
changing the co-ordinates 6, ¢ into 6 + &6, ¢ + 8¢, because we can
take 8’0 =0 and 8’ =0. Hence as the sum of the terms of the
third order does not, in general, vanish for this displacement, it is
clear that S cannot be either a maximum or a minimum.

Let the actual motion be from A to B, and let a neighbouring
motion starting from A lead the system to a position C reached in
the same time along the actual motion before reaching B. Then
we can show that a variation of the actual motion from 4 to B
ean be found which makes 8°S of any sign. Let P be any position
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on the neighbouring motion before reaching C, and ), one on the
actual motion after passing C. Then considering P and @ as fixed
and also the time of transit, the motion along PCQ cannot
make 88=0; for this condition is known to lead to the ordinary
dynamical equations, and it is clear that (impulsive forces being
set aside) no actual motion can be discontinuous. But there is
discontinuity at C, for otherwise when the system is started from
B towards 4, two courses would be open to the system on arriving
at C. Hence the first variations of § for an imaginary motion along
PCQ are not zero, and therefore may have any sign. But since
the discontinuity at O is of the first order of small quantities, this
first variation is of the second order. Now the value of 8 for the
actual motion is equal to that along the neighbouring motion to
C and then along the actual motion to B. Hence, P and @ being
still fixed, variations of the actual motion from 4 to B can be
found which make &'§ of any sign,

11. Let us apply this theory to determine the stability of a
given state of motion. First let us suppose the given motion to
be steady and to depend on only two variables. If we use the
function S there will be one co-ordinate and the time, if V two
co-ordinates. Let the system be disturbed at any moment by an
alteration of the velocities of its several parts, so that the initial
position of the disturbed motion is an undisturbed position, If
. the motion be stable the system will oscillate about the un-
disturbed motion, the oscillation repeating itself at a constant
interval. It follows therefore by Jacobi’s rule that S or ¥ cannot
be a minimum for a period longer than the time of a half-oscilla-
tion, If therefore S or ¥ be a minimum for all variations, starting
from 4 and ending at B, where B is a position on the steady
motion reached by the system at an interval as long as we please,
then the motion is unstable.

If we give a meaning to the word “stable” somewhat different *
from its usual signification, we may extend this proposition to
determine a test of the stability of any motion, whether steady or
not. All we have assumed is, that, if the motion be not altogether
unstable, there are some disturbances which will cause the system
periodically to assume the same positions as it would have done if
1t had been undisturbed, but the interval of these periods may be
any whatever provided the first be finite. If we use the Character-
istic function, these disturbances must be such as not to alter the
constant of vis viva, and if the Principal function, they must be
such as to bring the system to an undisturbed position in the same
time,

* This meaning does not always agree with the results of Art, 14, Chap, 1v.
[See also Arts. 17 and 18, Chap. 1v.]
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12. Next let us suppose that as the system proceeds from the
initial position A4 along the actual motion, S ceases to be a
minimum at some position B. The conditions for a minimum
are of two kinds. Suppose the system to depend on two co-
ordinates 6, ¢, and let £ be the Lagrangian function, then (1) we
must have L and dLIL _ dL both positive, and (2) it

a0 "¢ 905 dgs T dvd POSILVE,

must be possible to choose three arbitrary constants which enter
into a very complicated expression, so that this expression may
never become infinite between the limits of integration. The first
condition is clearly always satisfied since the vis viva of an
system is necessarily positive for all values of &' and ¢'. The
second condition will fail if there are two neighbouring motions by
which the system can proceed from 4 to any position between
A and B. 'If this be the mode of failure, it is clear from the
reasoning of Art. 2 that the conditions of stability are satisfied for
one kind of disturbance, and that therefore some at least of the
harmonic motions are stable or oscillatory, though the motion may
be unstable for a different kind of disturbance.

13. [These conditions become much simpler when the position
of the system is determined by one co-ordinate, or when the
Lagrangian function can be reduced to depend on one co-ordinate.
Let this co-ordinate be so chosen that it vanishes along the given
motion, and let us also suppose that both it and its differential
coefficient with regard to ¢, are small for all neighbouring con-
strained motions. Let this co-ordinate be called 6 and let the
Lagrangian function be '

L=I,+A8+B8 +3 A0+ B.0"+0,00.

Then since the Lagrangian equation of motion is satisfied by
hypothesis when @=0, we have 4,=DB, where the accent, as
usual, denotes differentiation with regard to ¢.

If the system be now conducted from the initial position 4 to

any other position B, both on the given motion, by any neighbour-
ing mode of motion, we have

§= [+ f(% B8+ C,00 +3 4,0) .
If 6 = u be any solution of the Lagrangian equation

d '
dt (Buo + 0110) = 0"01_'_ Aue’
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we may write the function § in the form*
1 d 6\*
§=[rdi+1 B“(uazg) .

The second term 'is -essentially positive, since B, must be
positive. Hence S is a minimum along the given motion unless
; : dé
Fu=
This gives 6= cu where ¢ is some constant. But 6 must vanish
at the two limits A and B, hence this choice of @ is excluded
unless there is some neighbouring mode of motion by which the
system could move freely from the given initial position A to the

osition B. The result is that S cannot cease to be a minimum

efore the first instant at which some neighbouring motion will
bring the system (starting from A4) into coincidence with some
‘contemporaneous position on the given motion. If the given
motion be steady, 1t follows that S cannot cease to be a minimum
before a time which is half that of a complete oscillation.

We thus have a test of stability. If the system depend on one
co-ordinate and if S be a minimum when the limits ofP tntegration
are from the initial position A to all positions on the actual motion,
that motion 18 unstable. But if S cease to be a minimum at some
point C, then the actual motion is stable from A to C.]

we can 80 choose the arbitrary displacement 8 as to make

* [Following Lagrange’s rule we may write the second term of § in the form
-N+ / {3 B+ (Cat M0+ (;Anm) o} a

The quantity outside the integral sign is to be taken between the given limits
and is zero, since 9 vanishes at each limit. Let us now put
' On+2N_ '.f.l
B, ~ wu’
1t is clear that this value of A cannot be infinite between the limits of integra-
tion unless u vanishes. For by hypothesis u and u’ are both finite and the co-
efficients B, and (), in the Lagrangian function are also finite. It then easily
follows from the equation

d
d—t (B, 1%+ C'nu) = C'uu +4 n%

that (Cu+2\3=By, (45,+2X). -
Hence the second term of S becomes

1 , w\2
5/3“ (o "’E) ar,

which is the result in the text. This might also have been deduced from Jacobi's
general transformation with one independent variable given in Prof. Jellett's
Calculus of Variations or Prof, Price’s Differential Calculus.

If u=0 between the limits of integration this transformation fails, but, as is
evident from the argument in the text, we choose 6 =u to represent a neighbouring
free motion such that =0 just before the system reaches 4 ; also B is so placed
that the next instant at which » =0 is after the system has passed B.]

[ P

-y e e

e -
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14. [We shall conclude the chapter with the application of
this criterion of stability to some simple case. -

A particle describes a circular orbit about a centre of force
situated in the centre. It is required to deduce the conditions of
stability as to space from the Characteristic function V.

Let a be the radius of the circle, n the angular velocity of the
particle about the centre 0. Let ¢(a)be the law of force. Let
A and B be two points taken on the circular orbit, and let the
particle be conducted from A4 to B by some neighbouring path
with the same energy as in the circular orbit. Letr=a+ p be
the radius vector of this path, corresponding td any angle 6.

If » be the velocity at any point of this path, we easily find
4 9
v=an {1 —e_ (a¢ (@) + 1)—')—.}
a 20

$(a)

If & be the arc of the path, we have
ds _. 1 /dp\?
(Te—_a+p+—2—a(@) .

If the angle A OB = B, we therefore have

V= [vdo=ang + ] ]f { (g—f,)'— p’p*} o,

where p*= ap'(a) +3.
7 %@

If the neighbouring path be a free path described with the

same energy, its equation is
p =L sin pé,

where 0 is measured from the radius vector OA, and L is an
arbitrary constant. This free path will cut the circle again in
some point €. If the angle 4A0C=r, we have py=m. .

If B coincide with O, we find by substituting this value of p in
the expression for V, that the second term of Vis zero. If B be
beyond C but such that the angle COB is less than v, draw two
free paths one from A4 as before and the other backwards from B
to meet the former in some point P, Then the angle 4 OP=3}p.
If the particle be conducted from A to P along one path and
from . P to B along the other, we-find that the excess of the
action over the action in the circular arc 4B is equal to

- ’%L’ sin pB.

Since pB is greater than a7 and less than 2, this excess is
negative. The action along the circular arc.is therefore not a
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minimum if B be beyond the first intersection of a neighbouring .
free path.

Lastly we may show that the action is a minimum if B lie
between 4 and C. To prove this we write the integral in the
expression for ¥ in the form

B dp\* dp  (dA
—x'] +f{ —=) + 25+ (75— P '}do.
[ 1T (do) Pdo (a8 P)e
The first of these two terms is zero since p vanishes at each
limit. Following Lagrange’s rule we make

AN s
w —-p = A
The integral then becomes
dp *
[[(Go+2e) ao.

This is alwa{s positive and the action along the circular arc is
a minimum. The argument however requires that A should not
become infinite between the limits of integration. It is easy to

see that

A =p tan (pf + E),
where E is a constant to be chosen at our pleasure. But if 8
exceed it is impossible to choose  so as to keep M finite be-

tween the limits of integration. Hence the action is a minimum
only if the angle A OB subtended by the limiting positions at the

centre is less than ;—; . The circular orbit js therefore stable if p*
be positive.
If, however, p* be negative, the expression for A changes its

character. Writing — ¢* for p*, we find

g+r_ o o

g—r= Ee-%0, |
thus the value of A can be chosen so as not to be infinite for all
positive values of 6. In this case the function V is a minimum

for all arcs 4B however distant B may be from 4. The circular
motion is therefore unstable.]
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