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SUMMARY

Fault monitoring schemes are proposed and evaluated for the class
of systems described by’linear, stochastic difference equations., The
systems are subject to sudden faults or changes in their parameter values,
which if not detected and compensated for, will cause deéradation fo the
performance of the Kalman filter used to estimate the state of the noisy
system. The mohitoring scheme is required to perform detection, isolation,
identification of time and size of fault and subsequent post-fault
reorganization.

The typeé of faults considered are represented by a term which is
additional to the failed parameter in the system modei. The parameters
under consideration are the means and variances of thé state and measuremenf
noise sequences and the coefficiénts in the state and ﬁeasurement equation.

On the aésumption that system faults will occur‘inf;equehtly, the
fault monitoring scheme utilises information supplied by a Kalman filter
based on the assumptipn of no faults., This information, namely the filter
innovations sequence and its Jjoint probability density function, is then
used by a secondary monitoring system which perfoxms a statistlcal analysis
on the innovations to decide if a fault has occurred,

Several structures for the monitoring scheme are proposed, ranging
from simple statistical tests to more complicated generalised likelihood
ratio tests. A simple logic, based on the different effécts the various
types of faults have on the joint probability distribution of the
innovations, is developed which pexmits detection and partial isolation
to be performed using the simplerx statisfical fests, while fault
identification is achieved by the subsequent use of generalised likelihood

ratio tests., Alternatively, the two stages may be implemented separately,



where specific application requirements so dictate.

The analysis is verified by digital computer simulation of a first
order system, and the proposed monitoring schemes are shown to operate
succesefully under well defined eénditiongf

Possible generalisations and extensions are also discussed.
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1. The development of mathematical models for linear stochastic
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CHAPTER I: INTRODUCTION

I.1r‘Backgroundfto thetproblem bf--fa-ul-t-monitor-ing°

The field of fault monitoring in control systems has received
much attention during the last decade.

Malfunctions of plant equipment and instrumentation often have an
adverse effect on factors such as performance, safety, profitability
and security and the study of aspects of reliability and redundancy in
dynamical systems is now established as a 'separate branch of Control
Theory. This area of investigetion may be termed automatic diagnostics,
leading to automatic alarm annunciation and post-fault system
reorganization.

Implementation of theoretical results in this field has been
encouraged by recent developments in low cost, high reliability, low
volume computervsystems. As new microcomputer configurations become
available for on~line control application, the implementation of
algorithms, which are highly complex due to the nature of the problems
‘to which they relate, becomes more attractive.

The feasibility and degree of complexity of schemes for fault
monitoring depends on the nature of the fault. Complete malfunction
of equipment is often relatively straightforward to detect, but detection
of process degradation, with which the present work is concerned, often

presents a more complex problem,



I.2 Previous work on fault monitoring,

Research‘in fault monitoring is rélétively'new and deals maihly'
with fault detection. Thus the problems of fault isolation and estimatién
are treated by a relatively few authors. Consequently the problem éf
system feorganization 1s also not researched.

The methods used can be classified in various ways according to the
adopted system model, filter type and detection-isolation mechanism.

Of particular mention ayxe:

Voting techniques, based on systems that possess a high degree of
parallel hardware redundancy. Simple logic.is then developed to detect
faults and eliminate faulty instruments [29]. Voting systems are in
genéral‘relatively easy to implement and often provide fast detection of
faults of larée magnitude but give rise to difficulties in detecting faults
of small magnitude (sometiﬁes referred to as "hard" and "soft" faults

respectivelyl. This technique does not provide fault isoclation or

Multiple‘hgbothesis filter-detectors: A large class of_adaptive
estimation and fault detection schemes involves the use. of a_series of
parallel linear filfers based on different hypotheses concerning the
underlying system behaviour [4], [6], [7], [32], [33], [42]. Filters
for each of the models are constructed and the innovations from the
various filtersrare used to compute the conditional probability that
each system model is the correct one. In this manner, if the system
parameters can be c¢nstrained to take a discrete set of values,
simultaneous system identification, state estimation and fault detection

can be performed. This technique, however, yields suboptimal filter
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estimates when no faults are present in the system.
A modification of the multiple hypothesis technique.involves the use
of the sequential probability ratio test (SPRT) in detecting a switch
between different models [62]. The SPRT test proceeds as follows:
given two hypotheses concerning the.system behaviour, the a-posteriori
probabilities of the two ﬁodels are computed and the logarithm of their
ratio compared to two thresholds., If it exceeds one threshold or falls
below the other, the test is terminated with a decision corresponding
t0 the crossed threshold; otherwise decision is deferred., The SPRT is
a powerful test with various optimum properties, but it can only be
used when all parameters under both hypotheses are completely known.
Jump process formulations: The nature of the problem of fault
detection suggests the use of jump processes in devising system design
methodologies., In such formulations an a-priori distribution characterises
the potential faults which are modelled as jumps. The size of the
possible faults is usually assumed known, or modelled as a random
variable, 'Jump process formulations appear to be quite natural for
fault detection problems, - However, approximations have to be made in
the analysis in order to obtain implementable solutions which in turn
impose limitations on the capabilities of the designs [34].
Failure-sensitive filters: Several methods have been developed
for the design of filters that are sensitive to specific faults., One
method involves the inclusion of several "failure-states" in the
dynamical system model [64] . If filter estimates of the fault states
differ markedly from their(nominal values, a fault is declared. This
approach provides fault isolation and estimation at the expense of
increased dimensionality and some performance degradation under no
fault conditions.

An alternative to the addition of fallure-states is a class of



. —4-
detector filters aesigned so as to highlight~ certain faults in the
filter residuals .[28]. This methodology is extiemely useful conceptually,
can be used to detect a wide variety of faults and provides detailed
fault isolation information; It is however suboptimal as an estimator
but may be used as an auxiliary mopitoring,systemo The major limitation
is its applicability to time-invariant systems only.

Innovations-based detection systems: These methods involve the
monitoring of the innovations or residuals of the filter based on the
hypothesis of normal.system operation. In such a configuration the
overall system.uses the normal filter until the innovations monitoring
system detects some sort of abnormal behaviour. The fact that the
monitoring system can be attached to a filterw~controller feedback
system is particularly appealing since overall system performance is
not degraded until after the monitor signals a fault and since the
monitoring system can be designed to be added to an existing systém,

A number of possible statiéfical tests can be performed on the
innovations, thus yielding information concerning the occurrence or
otherwisé of a fault [32], [33], [35]s This is basically a detection
method.

Finally, the generalised likelihood ratio (GLR) technique, motivated
in part by the shortcomings of the simpler innovations-based fault
detection techniques, can be applied to a wide range of faults making
use of the knowledge of the different effects such faults have on the
filter innovations. The method provides an optimumvdecision rule for
fault detection and'provides useful fault identification information
for use in system reorganization subsequent to the detection of a fault,
In éddition a number of simplifications can be devised and an analytical
study of the txadeoff between complexity and performance can be carried

3

out in simple cases [36].
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Succesful results of the GLR method have been reported in the

case of jump biases in the state of a dynamical system.[43].

In the present work, the fault monitoring schemes which are
proposed ' adopt the innovations based GLR technique but extend its
applicability to fault types not se far researched. These include
step biases and parametric faults in both the state and measurement

equations. Simpler statistical tests for these faults are also proposed.

I.3 Statement of the problem.

The problems to be investigated are principally concerned with
the design of fault monitoring schemes for the class of scalar, time
invariant dynamical systems described by the following set of linear

stochastic difference equations:

x (k1) =¢x (k) +w (k) (I.1)

y(k)=nx(k)+v(k) (1.2)

where x(k) is the system state at time tk;v{x(k)}, k=0,1,... is

therefore the state sequence; ¢ is a finite non-zero, non-random transition
constant; {y(k)}, k=1,2,... is the measurement or observation sequence;

n is a finite non-zero, non-random constant coefficient; {w(k)}, k=0,1,...,

{vix)}, x=1,2,... are stationary, white gaussian sequences, with

w(k)~N[0,q] §; g>0

v(k)~N[O,xr] } >0
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In addition, the initial state x(0) is usually considered gaussian
with,
x(0) ~ N[%(0),p(0)]
and x(0),‘w(g) and v(k) are assumed mutually independent for all'k.

Equation (I.1) is termed the "state" or "plant" equation whilst
equation:(IGZ) is called the “measurement" or "observation"‘equation.
These equations form the model for the discrete state estimation
functioh which proceeds on féceipt of the measurement sequence {y(k)}
given a set of parametric data. No loss of generality results from
the absence of a deterministic controi in equation (X.1), since the

- error in system state estimafion_is independent of such an input [40].

The model so.defined is not a unique representation of stochastic
linear system behaviour; In,‘general, appropriate state or measurement
models may be either continuous or discrete for specific applications.
Linear systems which are continuous in the state, however, may, after
discretization, be represented by equation (I.1), and the discrete
modelling of measurements received at an approximately constant update
rate is apprqpriate to a wide range 6f practical situations.

Although the fault monitoring schemes to be described are
principally related to. the scalar model, extensions to the general
multivériable‘case are discussed in section III.2.8. The treatmenf of
systems with time—&arying parameters is also possible.

Equations (I.1) and (I.2) are illustrated in block diagram form in

fig. 1(a).

The noisy measurement sequence {y(k)} is the sole source of
information from the actual system regarding the system state x(k).
Since accurate knowledge of x(k) is a prerequisite for precise system

operation through feedback cgntrols, a state estimator which operates
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on the measurement sequence is often used in practical applications.
It may be shown [11] that the estimator which minimises a wide class
of loss functions,for the system described by‘(Iol) and (I.2), is the

discrete Kalman filter estimator defined by the set of difference

equations,
2(£/k-1) = R (k-1/k-1) | ) (I.3)
p(k/k-1) = % p(k-1/k-1) + q - (1.4)
K(K) = p(k/k=1)nlnZp(k/k=1)4r]"} \ (I.5)
(k) = y(k) - nR(k/k-1) | (I.6)
R(k/K) = R(k/k-1) + K(k)y(k) (I.7)
p(k/k) = (1?K(k)n1p(k/k—1) (1.8)

| where‘ﬁ(k/k—l) denotes the‘optimum estimate of x(k) based on the
measurement sequence,

2 (g Fimt, 2,000, (k=) (1.9)
p(k/k) is the variance of the estimation error x(k)-R(k/k); K(k) is
ﬁermed the Kalman gain; v(k) is termed the measurement residual or
innovations process. The Kalman filter algofithm is of predictor-
corrector form, where equations (I.3) and (I°4)'represent the
predicted estimate together with its variance and équafions (I.7) and
(I.8) represent the filter output based on the gain of equation (I.5)
together with a correction in the light of new measurement information,
given by (I.6). The algorithm is initialised by,

£(0/0) = x(0) (I.10)

and p(0/0)

p(0) ' _ (I.11)
The filter update based on  measurements received is illustrated
in fig. 1(b),

In this case,where the system parameters are time-invariant, the
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propagation of the varlance may be conveniently computed a-priori
through to g steady state, since equations (I.4), (I.5) and (I.8) are
tndependent of ykq

It ls .well known (e.g. [40]) that the Kalman filter estimate is
unbtased minimum variance in the case of gaussian disturbances and
linear unbiased minimum variance for the general caee without the
agsumption of gaussianness. It then follows that the estimate R(k/k)is
also the mean of the state x(k) conditioned on the measurement sequence
yk,‘:egardless of the properties of the conditional density function.
Thus,

2(k/K) = E[x k) |¥ | (I.12)

The unbiasedness propexrty then giVes;

E[R(k/k)] = E[x(K)] \ (1.13)

A chaﬁge'inrfhe aséumed value of a parameter will Be considered a
fault. Faults are assumed to be - additive and of stepetype and
may occur in any of the system noise or dynamical parameters, No a-priori
information is assumed on the probability of occurrehce of any specific
fault at any time. Specifically, the following cases of faults are
considered:
(a). Change in the state noise.mean.
(c). Additional plant noise.
(d). Change in the measurément noise mean.
(f). Additional measurement noise,

Results are also obtained in the following cases:
(b) . Change in ¢.

(e) . Change in 7.

The following assumptions on the system model are made:
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1. The system is stable, i.e. |¢|<1
2. The system is uniformly completely controllable and uniformly
completely observable., This ensures the uniform asymptotic
stability of the Kalman filter,
The. fault monito;ing scheme is requi?ed to perform the following
operations:
1, Detection of fault
2. Isolation of fault
3, Estimation of time of occurrence and magnitude of fault.
4, Reorganization of system model following a fault,
The faults are assumed to be single, i.e. no more than one fault

may . .~ occur at any time,

I.4 Outline of proposed method,

The proposed fault monitoring schemes make extensive use of
statistical signal processing techniques which monitor the received
Kalman filter innovations. It is a well known fact that the Kalman
filter innovations are especially suited for étatistical hypothesis
testiﬁg since they are uncorrelated, have zero mean and their variance
is conveniently computed as part of the filter algorithm,

Each of the faults (a)~(f) will produce a different sequence of
residuals, therefore knowledge of their effects can be used to detect,
isolate and identify any fault,

It is shown that the innovations.sequence may be written.
as the sum of two distinct terms, as:
Y(k) = vo(k) + gi(k,e,ApT'
where {Yo(k)} is the residual sequence which would be obtained if no

fault,@ccuﬂréﬁénd gi(k,G,Ap) is an additive term which depends on the

~
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particular fault i, present time k, time of fault occurrence 6 and_
fault size Ap.

The terms gi are calculated for each fault (a)-(f) and subsequently
used.to establish the form of the probability density function (pdf)
under alternative hypotheses of a fault occurrence ef size ﬁp at
time 6,

The effect of each fault on the statistical properties of the
innovations sequence is used to classify the faults and hence devise
simple statistical tests which can be_used to:detect and partially
isolate the fault to a class which contains at most two probable cases.
The tests used are: the sign test for the innovations meen and a sample
variance and first order serial correlation test for the whiteness:
property.

The particula; form of the joint pdf of the innovations sequence,
whicﬁ depends on the occutred fault, can be used in more sophisticated
- statistical decision algorithms which perform fault detection, isolation
and identification. The statistical method used is the generalised
likelihood ratio GIR) test which involves calculating the ratio of
-the . maximum likelihood ML) pdf under each hypothesis and comparing
it'te a threshold. A decision is then made according to whether the
GLR value exceeds the threshold value or not. |

lhe GLR procedure can be used; at least in theoxy, in systems
where the humber of possible faults exceecls.two° In these cases the
GLR statistic has to be calculated for each paif of hypotheses of fault
against no fault and the most likely event chosen. |

Alternatively, the GLR algorithm can be used fo menitor for any
single fault or it can be used in conjunction with the simpler detection
partial isolation algorithms to monitor‘any fault in the assumed noise

parameters without the need for excessive calculations.
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I.5 Chapter organization.

The subsequent work is presented in five chapters.

In Chapter II some well known properties of Kalman filters and
dynamical systems in general are reviewed and mathematical models for
the class of faults considered are proposed. System.models which might
experience a fault in their parameters are then constructed using the
fault models.

Chepter III deals with the determination of the different effect
of each type of fault on the filfer innovations. These results are then
‘used to obtain the joint pdf of the innovations sequence in the event of
a fault occurrence.

In Chapter IV the additive effect of the faults on the filter
. innovations and the knowledge of the exact form of the joint pdf of the
innovations following a fault, is used to formu;ate the problem of fault
monitoring as 5 problem in hypothesis testing. Simple stétistiéal tests
based en the properties of the filter innovations in normal operation are
presented, which perform the functions of fault detection and partial
isolation., GLR test‘proeedures are also proposed and their implementation
problems examined.

Chapter Vv eontains simulated Monte~Carlo tria;s using the methods
develdped in Chapter IV. The tests are classified and conclusions for
each.case presented,

Chapter VI contains general conclusions and remarxks as well as
recommendations for future research,

Appendices of mathematical proofs and computer programs are included

at the end of the thesis.
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CHAPTER II: MATHEMATICAL FORMULATION

IT.1 Properties of Kalman filter innovations.

In Section I.3 the residual or innovations sequence for the Kalman

filter is defined as:

y(k) = y(k) - nx(k/k-1) (I.6)

In any practical scheme for state estimation, it is necessary to )
- track the performance of the filter, in particular to check whether the
algorithm is operating on the basis of correct model parameters. Errors
in assumed parameter values may lead to the problem of filter divergence [40].
In: principle, a self-checking prodedure based on new information provided
by y(k) and the output of the Kalman filter at instant tk‘is not possiblé,
however,gince all thg'iﬁformation ih {y(k)} is apparently utilised in the
generation of X(k/k). One such measure, however, is provided by the
innovations process, since x (k/k-1) is computed in the absence of the new
measurement update y(k), and the product nﬁ(k/k—l) is then interpreted
as an estimate of y(k).

Since y(k) is derived from a linear transformation on stochastic
processes with known probability laws, p[y(k)] may be defined. It is

shown in [39] that for a Kalman filter operating with correctly identified

parameters, the residual sequence {Y(k)},‘k#lyzg;;h‘iswga&ésian;‘ﬁith§

>

Y(k) 2 E[vy(k)] = 0; all k ’ (II.1)

Ely(k)y(m)] = 0; all k#m (I1.2)

14

c(k,m)

c(k,k) 2 E[y2(k)] = n°p(k/k-1) + r; all k (II.3)
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These important properties, valid in the case of correctly
identified parameters for equations (I.1) and (I.2), will form the basis

of the fault monitoring scheme to be described in Chapter III.

IT,2 Stochastic controllability and observability,

In deterministic dynamical systems the concepts of controllability
and observability playta very important role in characterising possible
system behaviour,

The concept of controllability refers to the general property of
being able to transfer a system from any given state to any other by
means of a suitable choice of control functions., Closely linked to the
idea of controllability is that of observability which in general means
that it is possible to determine the state of a system by measuring oﬁly
its output, given that the control inputs to the system are knownf

The coiresponding concepts of observability and controllability of
stochastic syétems exist and are intimately connected with convergence
questions of a-posteriori pdf's such as p(x(k)ryk), the conditional
density of the state x(k) given ka

Consider the time~varying multivariable system corresponding to

(I.1)=(I.2) given by the following pair of vector difference equations:

Z(k+1) = ¢(k+1,k)x (k) + T (k)w(k) (I1.4)

¥ (k) H(k)x (k) + w(k) (I1.5)
where ¢ (k+1,k), T(k), H(k) are matrices of appropriate dimensions and
w(k), v(k) are vector gaussian random sequences of zero mean and
covariance matrices Q(k), R(k). respectively, uncoxrelated for all k.
The only control in (II.4) is the random term Efk)o Thus it seems

that if (9,T) represents a controllable pair x (k) should "go everywhere".

The last statement can be expressed formally as follows: if;N is a set
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having positive volume and located anywhere in Rn, then there is strictly
positive probability that x(k) is in N. To obtain conditions on
controllability, consider the pdf of x(k):

T2 exp{ " (0P (k) x (k) }

p(x(k)) = (2wlp_(k)|5
where P (k) is given by,
P(k+l) = &(k+1,k)P(k)®T (k+1,k) + T(k+1)Q(k+1)T7 (k+1)
and it is assumed'thath[EfO)] =0..
The following definition may then be made [377 s
Dl: The state, x(k), of‘the sfstem (I1.4)=(II.5) is controllable
if‘and only if P(k) is non-singular for everv k>0,
Alternativelv, consider the difference at time k of the state

vector x(k) and ¢(k,0)x(0), given by,

a(k) 2 x(k) - ¢(k,0)x(0)

=‘§ ¢ (k,i+1) T(1)w(d)

"
o

Then, E[Ejk)] all k

kol T, . . T

T Ok, i+1) T(L) QL) T (1) 8" (k,i+1)
i=0

and

cov[d (k)]

»

C(k,0)
If the norm of the matrix C(k,0) remains bounded for all k, then
Ilgfk)ll'will remain bounded for all k. In other words the effects
of the random disturbances remain bounded.

The following alternative definition of stochastic system
controllability may then be made [40]:.

D2: The state x(k) of the system (II.4)-(II.5) is completely
controllable if and only if

C(k,0) > 0, for some k>0,

and uniformly completely controllable if there exist a positive integer

N and positive constants a;B such that
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O<aI<C (k,k=N)<BI

The concept of observability refers to the information about the
system state that can be gained from ob§erving the system output, In
stochastic systems observability may be defined as the existence condition
of the system state estimates with certain specified asymptotic @' behaviours,
where the c¢lass of the state esﬁimates of §jk) is taken to be functions
of yk. The following definitions may then be made [4o];

D3: The state ijk) of the system (II.4)=(II.5) is said to be
observable i1f and only if the covariance matrices associated with the
conditional pdf of x(k) given yk remain bounded in some sense.

Specifically, define the information or observability matrix

k o
ok, 1) & ) 8T E (R OHKIE (LK)
i=1
The observability matrix obeys the same equation as the state estimate
error covariance matrix if the initial uncertainty is zero, i.e. P(0)=O.
Then [40]‘:

D4: The state ﬁjk) of the system (II.4)~-(II.5) is completely

observable if,

O(k,l) > O for some kO
It is uniformly completely observable if there exist a positive integer
N and posiﬁive constants o; B such that,

0 < OLI < o(k'k_N) < BI o

IT.3 Stochastic stability,

There exist many definitions of stability for deterministic systems.
In general the intuitive idea of stability in a dynamical system is that
for "small disturbances" from the equilibrium state at some time k,

subsequent states should lie within a bounded'region;
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In stochastic systems, the stability of the Kalman filter is
usually investigated. Let the following definitions be made [40]:
D5: The system (II.4)-(II.5) is stable if,
[tex,0 ] ¢ ¢, for all k30 -
It is asymptotically stable if in addition,
Lim ||e(k,0) || =0

k-0
and uniformly asymptotically stable if .

||e(x,0) ] s;czexp(—c3k) for all k30, (the ¢, are positive constants).

Consider the multivariable, time varying Kalman filter corresponding
to (I.3)-(I.1l1l). Then the filter state may be written in difference
equation form as,

R(k/k) = [I-k(k)H (k)] (k,k-1)X (k-1/k-1) + K(k)y(k)

and the following theorem holds [40]:

Theorem 1: If the system (II.4)-(II.5) is uniformly completelv
controllable and uniformly completely observable an§~if P(0) >0 then the
Kalman filter represents a uniformly asymptotically stable system.

As, a consequehce,

15,0 || < ©exp(-c5k)
where,

k .
'5(k,0) = ] [I-K(L)H(1)]e(1,1i-1) (II.6)
i=1

II.4 ‘System faultsg and fault monitoring,

In applying the discrete linear Kalman filter, described by
equations (I.3)-(I.ll), to a real system modelled by (II,1)-(II.2), the
model parameters ¢ and n, noise variances.q, r and initialisations R(0),

p(0) must be specified a-priori.
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The performance of the Kalman filter will therefore depend on the
accuracy of the model parameters, which are obtained by some identification
procedure.

If the Kalman filter is operating with cérrectly identified‘parameters,
then a sudden fault: in the real system will introduce errors in the
model parameters, which unless corrected, will produce degradation of
filter performance, Sucﬁ degradations may lead to an increase in the
state estimate error variance p(k/k) or a bias in the state estimate
2 (k/k) or both.

System faults may then be defined as follows:

D6: A system fault is any change in the assumed system
parameters which causes a degradation in the performance of the state
estimation proéedure°

in contrast with the tgrm failure, which usually denotes Complete
inoperability of equipment or process.

~ The desidn objectives of a fault monitoring scheme. consist of the
required functions to be performed in the event of a fault and the
performance requirements which are to be met., The following functions
could be pefformed:

. l; Fault detection, which simply consists of making a binary decision;
"either that a‘fault has occurred or not.

2, Fault isolation, which refers to the problem of determining
the. source of the fault where more than one parameter is subject to
change.

3. Fault estimation, which involves the determination of the extent
of the fault. This ﬁay be accomplished by estimating the time of the
fault occurrence and the magnitude of the fault.

4, System reorganization, which entails reinitialisation of

model and filter parameters according to decisions made within functions

K]
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1, 2, 3.

The extent to which functions’l-4 neéd be performed clearly depends
ypon the application. In some cases, it may be sufficient to generate an
alarm, denoting faulty operation; further. investigative action may then
be taken by the human operator. In other systems, incorpofating
redundancy, fault isolation without estimation could be performed. Where
hardware redundancy is not available, but faulty equipment may be capable
of operating Qith reduced performance in a partial failure mode, then
fault isolation with estimation would be necessary.

Intuitively, the tasks described can be associated with varying
degrees of software system complexity-~ j.e. isolation requires more
spphisticated data processing than an alarm, and éstimation more than
isolation. Onkthe other hand, iﬁproved fault monitoring cépaﬁilities may
result in a reduction in the requirement for hardware redundéncy.' Also
in some épplications, fault isolation and estimation may be delayed until
after an alafm has been spunded. In such a sequential stiucture, the
complexity of»the mbnitor;ng process is increased only dfter a fault has
been detected, thereby reducing tﬁe computational burden during normal,
no~fault operation.

In addition, the fault monitoring scheme should possess fhe
following proéerties:

1. The time taken to detect a fault, termed detection delay time, td'
should be a low multiple of the system sampling .ti-meA.>

2. The estimation delay time, te, shpﬁld.also be small.

3. There must be a small probability; Pf,'of false alarms:

4, There must be a high probability, Pd; of correct detections.

In the design of practical fault monitoring schemes, computational
complexity is an important consideration, A scheme that has reasonable

storage and time requirements is preferable. A design methodology which
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incorpo;ates options over a range of implementations is also useful, thus
allowing a tradeoff between system cémplexit§ and performance. In addition
it would be desirable to use a design approach which could take advantage

of new computer capabilities and struttures as they become available.

IT.4,1 Fault modelling,

It is assumed that a fault can occur with equal probability at
any time during the system operation. The size of the fault is also
arbitrary but may be bounded above and/or below frém éhysical g
considerations, |

The general form of the fault model'will be assumed additive, i.e.
given a system parameter p and a fault modelled by h(k,0,v) then the
value of the parameter following a fault will be given by:

Phew = Porg + B(K:O,V)

where,
| v e [Vlivu]‘“
is the size of the fault constrained below by v, and above by v, and
6 ¢ [0, =)
is the time of faﬁlt occurrehce which takes a finite integer value if
a fault occurs and is infinite otherwise.
Faults may be classified into three types:
Type I: jump
Type II: step

Type III: ramp and higher, order.

A type I fault may'be modelled by the term

oy, 0
where ék 6 is the Kronecker delta defined by
14
Gk,e = 1; k=6

0; k#6
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If a fault has not occurred 6§ is infinite, hence Gk «= O« In practice
. ’ A
this model may be used for instantaneous faults of one time unit duration.

This situation is illustrated in fig. 2.

A type II fault may be modelled by the term

v
ok,ﬁ
where Gk 6is the unit step defined by,
14
(e} = o
X,8 1; ka6
= O; kéﬁ

If a fault has not occurred 6 is infinite in which case o, = O,
. . 14
Inipractice this model may be used for faults of constant size
which have a permanent effect on the system (fig. 3). Since estimation

of a fault is carried out simultaneously with or following detection, it

will be assumed that,

te > max{td,te} = tg

where tf denotes the fault duration. Under this assumption consecutive
steps could be monitored, since the fault monitoring process would have
detected, .estimated and subsequently reinitialised the filter parameters

before the occurrence of a new fault.

A type TIIT fault may be modelled by the term
h(\)lk) Gk,e
where h(v,k) is a polynomial in k; v may be used to represent faults

of changing magnitude. A ramp could then be represented as

(a + kv)o (fig. 4).

k'e‘
Such models introduce further complexity to the fault monitoring scheme,
However, there could be situations where ramps might be approximated

by a series of steps. This approach will depend on the slope of the

ramp; which should not be too steep for such an approximation to be
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valid.

II.4.2 Modelling of systems subject to type II faults.

The system model; described by equations (I.l)=(I.2), can now be
rewritten to include the possible effect of a fault, The fault models
prbposed are all of the additive type. They cover a range of situations
which occur in practice, including: shifts in bias states in inertial
systems [32], [33]; leaks in jet thrusters in aerospace applications [41];

electrocardiogram arrythmias [42] and traffic control signalling [9].

Faults of type I will have a temporary effect on the system
performance since the Kalman filter will resettle at its pre-fault
condition without the need for fault detection and estimation.
Consider for example a type I fault in the value of ¢. This may be

modelled as,

x (k+1) (¢+v6k*1'9)x(k) + w(k)

¢x (k) + w(k) + vx(k)6k+1'9

Assume 6=k+l. At this time the Kalman filter estimate is R(k+1/k+1)
with variance p(k+1/k+l). The additional term vx(k) introduced by the
occurrence of the fault may be thought.of as an error in specifying
2(k+1/k+1). If the filter was sﬁarted at time k+1, the effect of the
initial error vx(k) would diminish, under stability assumptions, as
succéssive measurements are processed [40].

The’time taken for the Kalmap filter to settle will in general be
greater than te and therefore in applications where accuracy in state
estimation is vital at every time, a fault monitoring scheme should be

employed for faults of this type [36],
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Type II faults are more important since they will have a permanent
effect on the performance of the filter and will thus have to be
monitored. Once such a fault has been detected, isolated and estimated
it will also be necessary to réinitialise, the Kalman filter, which will

then run with parametgrs which .are modified following fault monitoring.

IT.4.2.1 Type II fdults in the parameters of the plant equation.

The following models are proposed in the case of faults in the
plant equation:
a. Step bias in plant state.

x (k+1)

¢x (k) + w(k) + vxok+i'e (II.7)

y(k) = nx(k) + v(k) (II.8)

Step changes in the mean of the plant noise sequence w(k) may also!be
modelled in this manner,
b. Step change in ¢.

x (k+1)

(¢+A¢ok+l'e)x(k) + w(k) (I1.9)

y (k) nx (k) + v(k) (I1.10)

¢. Additional plant noise.

x (k+1) ¢x (k) + w(k) +A;§(k)o (IT.11)

k+1,0
nx (k) + v(k) (I1.12)

y (k)
where cx(k) is conveniently defined as a white gaussian random sequence,
independént of x(0); w(i), v(i) for all i,k and of zero mean and
unknown constant wvariance Sx'

AlternatiVely, anfincfease or decrease in the variance of the
plant noise may be modelled as,

x (k+1)

¢x (k) + (l%Vwc Yw(k) (II.13)

k+1,0
nx (k) + v(k) (II.14)

y (k)

The new variance will be given by,
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2
(1+ok+l,ev) q

Hence if v is negative (11.13) will model a decrease in the plant noise
variance, whereas if n is positive an increase in the plant noise
variance is modelled., This is particularly useful in identification
applications of the described fault models where fhe initial guess for
the noise variances may be optimistic or pessimistic. In fault detection
applications however, where performance degradation is usually monitored

the model given by equations (II.,11)-(II.1l2) will be adequate.

II.4.2.2 Type II faults in the parameters 'of the measurement

“eggation.

The following models are proposed in the case of faults in the
parameters of the measuremeht‘equation:

d. Step bias in the measurements.

C x(k+1l) = ¢x (k) + w(k) ; (TI.15)

vy (k)

nx(k) + v(k) + quk’e ' (IT.16)
Step changes in the mean value of the measurement noise sequence v (k)
may also be modelled in this manner.
e, . Step change in n,
x (1) = x (k) + wik) . (11.17)
y(k) = (n+Anak,é)x(k) + v(k) | (11.18)

f. Additional measurement noise.

x (k+1) éx (k) + w(k) : (IT1.19)

v (k) nx(k) + v(k) + Ey(k)o (II.20)

k,0
where gy(k) is conveniently defined as a gaussian sequence of zero
mean and unknown‘constant variance sy, independent of x(0), w(i), v(i)
for all i,k.

Alternatively, an inc¢rease or decrease in the variance
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of the measurement noise may be modelled as,

x(k+1) = ¢x (k) + w(k) (I1.21)

+
y (k) nx (k) + (I vvck+l’e)v(k) (II.22)
The same comments as for the case of additional plant noise apply

here,

IT.4.2.3 Single and multiple faults.

The models developed here may be used in situations where a
fault may occur in only one parameter at any giﬁen.instant. Such
faults may be called single faults. The same approach cén howévef
be extended to the.modelling of simultaneous occurrence of faults
in more than éne parameter. Such faults may be termed'multiglé.

Fault monitoring schemes for multiplé faﬁlts'will increase the
computational complexit? and cost dué to the increase in the number of
unknowns and the number of possible combinations of faulf occurrences,
If, for exampie.three kinds of faults can occur in a given system,
the number of possib1e~faultyAsituations.is seven. In general, thé
number of different.fault possibilities is 2n-1, where n is the number
of distinct single faults fhat may occur,

Since in many applications it may be arguéd that the probability
of occurrence of multible faults is appreciably lower than for a single
fault, the proposed monitoring schemes are based on the assumption

of single faults,
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CHAPTER III: EFFECT OF FAULTS ON KALMAN FILTER RESIDUALS

IIIql"Effectrofrfaultsfonftherpropemties'of'the'residual

| seduence,

Given the obgexvability cohditions, the true system is observable
through the measurement seQuence'{y(k)} only and equations (I.3)=(I.8)
imply’that.knowing,theQmeasurement.residuai seqﬁencef{y(k)} is equivalent
to knowingn{y(k)}o It therefére follows that’{y(k)} will contain
information of faults provided that ;he faults are observable, Although
{y()} and {y(k)} both.contain information of é fault, the use of {y(k)}
for fault monitoring is fundamentally more atﬁractive in a scheme based
on statistical inference, since the Yesiduals have been shown to be
white , with zero mean while the measurements do not possess these
properties [46].

If no fault occurs, the residuals generated by the system measurements
and the Kélman filter can be thought of as sample boints from a normal
probability distribution with zero mean and variance c¢(k;k) given by
(II°3); If a fault occurs the system output and therefore the residual
sequence will no longer be répresented by (I.2) and (I.6) respectively.
The filfer algorithm however, will still operate on” the assumed values
and as a consequence it will generate residuals which do not belong to
the assumed probability distribution.

By obtainingbthe probability distribution of the residuals generated
by the Kalman filter after each type of fault, fault detection and
isolation can be performed by testing which of the possible probability

distributions represent {y(k)}. Estimation of the size of the fault can
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then be performed by estimating a par&meter of .the appropriate

probability distribution.

III.1.1 Effect of type-~I faults in plant state,

It is shown in [43] that for a jump bias in the plant state

modelled by,

x (k+1) ox (k) + w(k) + 6

k+1,0"

y(k) ='nx(k) + v(k)

the state, measurement, state estimate and innovations sequences

may be expressed as,

x(k) = x (0 + 65 (11131)
yK) =y (k) + ne* % (ITT.2)
R1k/k) = 2, (c/K) + £(k,0)v (ITI.3)
y(k) = Yo(k) + g(k,9)v , (ITT.4)

where X (k) yo(k), ﬁo(k/k) and Yo(k) represent the values of the
corresponding variables that would be obtained if no fault occurs,
and the additional terms exist if a fault occurs at time 6 and are

calculated from the recurrence relations,

g(k,8) =0 (III.5)
£(k,0) - 0; k<b6 (I11.6)
g(6,8) =n | (1I1.7)
£(6,8) = K(B)n; k=0 ‘ (I1I.8)
g(k,0) = n[¢" O =g£(k=1,0)] ' (I11.9)
£(k,8) = Kk)g(k,8) + ¢£(k=1,0); k>8 (I11.10)

An important feature of these relations is the fact that the
Kalman filter résiduals, as indeed all parameters directly affected by

the occurred fault, can be written as the sum of two terms, one of
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which models effects solely due to § and v and the other represents
all effects other than those due to 6 and v..
This result, obtained for the particular case of a jump bias in

the plant state, may be generalised for any fault of the additive class,

II1.1.2 Effect of additive faults,

The following theorem is a generalisation of the result of the
previous section:

Theorem 2: ‘The state, measurement, filter state estimate and
innovations sequences for models represented by equations (II.1l)=-(II.2)
and (I.3)-(I.1ll) which are subject to sudden faults modelled by any

additive function, may be expressed as:

x(k) = X, (k) + hx(k,e,Ap) (IT1.11)
y(k) = y (k) + hy(k,e,Ap)' (II1.12)
R (k/k) = X, (k/k) + £(k,0,4p) (II1.13)
y(k) = Yo(k) + g(k,9,Ap) (II1.14)

where,

hx(k,G,Ap) is the effect on state x(k) of a fault of size Ap which
occurred at time 6, k

hy(k,é,Ap) is the corresponding effect on measuremént v(k),

f(k,0,Ap) is the effect on the state estimate 2(k/k) and

g(k,9,4p) is' the effect on the residual y(k).

Further, the recursions on hx’ hy' f and g are given by:
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g(k,8,4Ap) = hy(k,G,Ap) - n¢f(k-1,9,Ap) (ITI.15)
£(k,0,8p) = K(k)g(k,0,Ap) + ¢f(k=1,0,Ap); k36 (III.16)

The proof ié given in Appendix Il,

The quantities hx and hy depend on the particular fault but in
view of (I.2), if a fault occurs in a parameter of the plant equation

hx(k,e,Ap) # O and ‘ v (III.18)

h(k,8,8p). = nh, (k,8,0p); k>0 (III.19)
but if a fault occurs in a parameter of the measurement equation,

hx(k,e,Ap) £ 0; all k . (III.20)

hy(k,e,Ap) #AOa k26 (II1.21)
If a fault does not occur, since 8 is infinite hx and hy are identically
Zero.

Equations (III;il)é(III.l7) provide . a model for the evolution
of the {x(k)}, {y(k)}, {&(k/k)}.and {y(k)}. However, the state
estimate and innovations sequences are still calculated by the Kalman

filter using the real system measurements y(k) from the equations,

¥ (k) v(k) = n¢2(k-1/k-1) and

2(k/k) o (k=1/k-1) + K(k)vy (k)

The modelling however of the state estimate and innovations
sequences by (III°13)¥(III°l4) is useful because it enables system
performance to be analysed and checked under any fault cqndition that

can be represented as an additional function,modelled by hy(k,e,Ap),

in the measurements.

For type II faults. appropriate hy functions can be calculated
using the models developed in Sections II.4.2.1 and II.4.2.2.

Alternatively, since the effects pf faults are additive ,type II faults
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may be thought of as a series of successive type I faults, In this
way, the effect of a type II fault of size Ap can be found by gonsidering

the total effect of successive type I faults of equal, butkunknown, size

Ap..

ITI.l.2.1 Step bias in plant state.

The jump bias equivalent for this kind of fault was presented

in Section III.l.l.

The effect of consecutive jumps starting at time 6 up to and
including time k will therefore be:

ga(k,e)vx + ga(k,6+l)vx + ces + ga(k,k)\)x

Wherel f’roln (III! 5) - (I:I:Iq lo) []

gy (13) = nle" =0 (i-1,9)] (111.22)
fa(i,j) = K(i)ga(i,j) + ¢fa(i-l,j); izj (I1I1.23)
9 (1,3) = £ (1,3) = 0; 13 (III.24)

The residual sequence may then be written as:

k

Yk = yy(k) + ) 9a (ked) v (I11.25)
i=g -

IT1.1.2.2 - Step change in ¢.

To calculate the appropriate g and £ functions in the case of a
change in the transition constant of the plant equation, consider

equations (II.9)=-(II.1lQ) when 6=k+l:

x (k+1)

(¢+AP) x (k) + w(k)

= %, (k+1) + Adxg (K)
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At time k+2, the following equations hold:

x(k+2) = ($+4¢)x (k+1l) + w(k+1)

]

(+46) (x_ (c+1)+A0x  (k)) + w(k+1)

xo(k+2) + A¢xo(k+1) + (¢+A¢)A¢xo(k)

It follows by inspection that the desired expression for the effect
of a step change in ¢ is given by:
k k=1
h (k,0,A¢) = ) (d+Ad) " ~Adx_ (i-1) (ITI.26)
X (¢} :
i=6
In this case, the effect of a step change cannot be written as
the sum of effects of successive jump changes. Consider, for example

a jump change at time k+1; then,

x(k+1)

(¢+A)x (k) + w(k)

Ko Ue+1) + A¢go(k)

The effect of this jump onh the state at time k+2 is:

x(k+2) = ¢x (k+1) + w(k+l)

¢(xo(k+1)+A¢xo(k)) + w(k+l)

xo(k+2) + ¢A¢xo(k) (I11.27)

Simila¥ly, if a jump occurs at time k+2, its effect is given by:

A}

x (k+2)

xo(k+2) + Agx (k+l) (III.28)
Adding the two effects, given by (III.27) and (III.28), yields:

x(k+2) = xo(k+2) + A¢xo(k+1) + ¢A¢xo(k) (IT11.29)
Using (III.26), thg corresponding hx function is:

h (b2, k41, A9) = %, (k+2) + Agx (ctl) + (9+A$)A¢x (k) - (111.30)
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Comparing (III.29) with (III,30) the assertion is seen.
However, the terms of the sum in (III.26) can be thought of

as an effect of a jump fault, Therefore, define,

B (3,000 & (p+a) Tagx 3.1 T ,

Equations (III.15)-(III.17) then become,

I, . . .
gg(irle¢)‘= nh*(i:J,A¢) - n¢fb(l'lrj1A¢)

= nr+a0) ex (51 - 0£7(1-1,3,00)]  (111.3D)
fg(ille¢) = K(i)gg(i,j,A¢) + dfg(i-llle¢» izj (III.32)
9 (1,3,4¢) = fg(i,j,A¢) = 0; 1<) (III.33)

Alternatively, since,

gy (3+3,A¢) = nA¢x_ (3-1) and

£7(3,3,0¢)

K (3)ndéx (3-1).
and the only term in (ITI,31)-(IIT.32) involvingAA¢xo(j—l) is hi,

“(1,3,0¢)

gb = gb(irjrA¢)A¢§°(j-l)
fb(irjrA¢) = fb(irjrA¢)A¢xo(j'l)

where 9 and £ are recursively computed from:

b
9y (1,3,80) = ni(e+a0) ™I = g (1-1,3,00)] (111.34)
fb(i;j,A¢) = R(1)g, (1,3,00) + ¢£, (i-1,3,80); 133  (II1.35)

9, (1,3,40) = £ (1,3,4¢) = 0O; 1<j (III.36)

It may be seen that in the case of a step change in . ¢, the
unknown size of the fault is nonlinearly related to the additional

terms gb. As a consequence the form of equations (III.34)-(III.35)
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¢cannot be written in the convenient form of equations (III.22)-(III.23).
Using equation (III.l4), the filter residuals,imay be expressed
as:

. |
YK = v k) + ) g, (k,i,06) Agx _(1i-1) (III.37)
i=9 :

I17.1.2.3 Additional plant noise.

In the case of additional plant noise the cumulative properties

outlined in Section III.l.2 ,are valid. Consider equation (II.1ll)

with 6=k+1,
x(k+1l) = ¢x(k) + w(k) + gx(k)
= xo(k+l) +‘§x(k)
and,
x(k+2) =

ox(k+1) + w(k+l) + gx(k+l)

xo(k+2) + ;x(k+1) + ¢§x(k)

In general,

k
k=i
Y ¢ g, (1)

hx(k,e,gx) '
i=6

The terms in the above sum are just the sum of the effects of

consecutive additional plant noise of jump type, since in this case

x(k+l) = ¢x(k) + w(k) + 2, (k)
= xo(k+l) + gx(k)
and x(k+2) = ¢x(k+l) + w(k+l)

xo(kf2) + ¢§x(k)

In general, it may be seen that the effect is ¢k-e;x(e),
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Hence, the residual sequence may be written as:
k
yk) =y (k) + Y g (k,1)%_(1) (III.38)
0 126 c X

where the gc can be calcuiated iteratively using (III.15)~(III.16)

with the appropriate hy function of a‘jump fault, as:

-J

gc(i,j) = n[¢i - ¢fc(i-1,j)] ' (III.39)
fc(i.j) = K(i)gc(i,j) + ¢fc(i,j); i2j (III.40)
gc(i,j) = fc(i,j) = 0; i<j (ITI.41)

It may be seen that gc obeys the same recurrence equations as ga.
This is to be expected as the sequence of additional plant noise

- can be thought of as a state bias of random magnitude.

IIT.1.2.4 Step bias in the measurements.

If a fault occurs in & parameter of the measurement equation
simplification ofrthe general results of Section III.1l.2'is possible
The cumulative property hélds, since if akfault‘occurs, its effect is
not propaéated to subsequent states. For a step bias therefore,
consider a series of successive jump biases. If a jump bias occurs
at time k+1,

v (k+1)

]

nx (k+l) + v(k+1l) + vy

k+1) +
YO( ) vy

At subsequent times,
y(k+i) = yo(k+i)

Hence, defining h; as the effect of the corresponding type I fault,

I
<
-

]

(&}

I .
hy(iIJ I\)y)
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Henc¢e, (III,15)~(III,17) become

gd(i,j) = —n¢fd(i—l,j); 1>3 (I1I,42)
£,403) = K(i)gd(i,j) + ¢fd(i,j); 124 (IIL,43)
gd(i,i) =1 " (III.44)
gd(i.j) = fd(i,j)A= 05 i<d (III.45)

and the residual sequence may be wyitten,
k .
Y(k) =y (k) + ) g.(k,i)v (III.46)
o) . d y
i=9
Note that (III.42)-(III.45) should be strictly written with the

factor vy included, as:

gd(i,j) =0 - n¢fd(i—l,j); i>j (III.47)
fd(i,j) = K(i)gd(i,j) + ¢fd(i-l,j); izj (III.48)

g (i,i) = v (I1I.49)
d y

gd(i,j) = fd(i,j) = 0; 1i<j (III.50)

However, it may be seen that (III.46) is an equivalent form to
k
yk) =y () + .2 gqked)
i=6
where the gd are now defined by (III.47)-(III.5Q), and the form

implied by (III.46) will be used in subsegquent cases.

IIT.1.2,5 Step charige in n.

In the case of a step change in n, the appropriate g functions
can be calculated similarly to preceding cases by considering

(II1.18) with ¢=k+l:

v (k+1)

(ntAn) x(k+1) + wv(k+l)

Yo(k+l) + Anxo(k+l)
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Consequently,
hE(4,9,80) = An x (37 =3
v ¢jrAn = An x,(3);
= 0; 1#])
Hence,
k
yk) = yo(k) + .ize.-ge(k,i)Anxo(i) (III.51)

where the g, are defined, as the 9qr aS:

g () = mnE (AL, 9)5 453 (II1.52)
fe(i'-,j). = K(i,)ge(i,j) + ¢fe(i~1,j); izj (I11.53)

9., =1 (IIT.54)

‘ gé(.i,j) = fe(:L‘,j) = 0; i<j (I11.55)

ITT:1,2,6 Additional mesasurement noise,

Considering (£I.20) with 9=k+l, gives:

y(k+l)= nx(k+l) + v(k+l) + cy(k_+1)

yo(g+1) + ¢ ()

hence,
I o
h'(i,3 ) = (1) i=
¥y rjrcy Cy f 3

0y 1#)

The residual sequence may then be written as,
k
Yk) = v k) +'1Ze gf(k,i)cy(i) (ITI.56)

where 9e is similarly defined by (IIT,47)~(III,50) or (III.52)-(III.55),



-38-

ITI;1:2,7 "Summary of -results,

The results concerning the effect 9f the various kinds of type II
faults on the form of the Kalman Filter residuals are summarised in
Table 1,

As it has been shown in Sections IIT.l.,2.1 = I1T,1.2.6, the
innovations sequence can be written as the sum of two distinct terxms,

The first term is the walue of the innevatiqns if no fault occurs;

while the second term models the effects of the fault only, Furthermore,
thetmodélled effect of a type IT fault, can be.conveniently expressed

as the sum of effects produced by successive corresponding type I
faultsu(except in the cage of a change in ¢, where a non~corresponding

type I fault has to be defined),
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III.2 Effect of type II faults on the joint pdf of the

innovations.

Having established the form of the innovations sequence under
faulty conditions, their joint probability distribution will n;Q be.
examined,

In noimal operation the statisfical properties of the residuals
are given by (II.1)-(II.3). When a fault occurs, the residuals
generated by the Kalman filter evolve according to (III.14).
Therefore the joint pdf in the event of a fault occurrence can be
calculated by consideringv(IiI.l4j for every fault case,

For every possible fault, it is necessary to establish whiéh of
the statistical préperties of the residuals in normal operation
remain the same and which are subject to change.

Since the linear structure of the Kalman filter equations
and state and measureﬁent models is not changed in the presence of
an additive type fault,.thé residuals remain a linear combination
of the gaussian measurement sequence {y(kf} and are therefore also
gaussian., This reéglt means that the joint pdf of the innovations
will be completely characterised by its first and second moments.
The effect of the faults on the whiteness property must be examined
as well, In noxmal operation the whiteness property enables the
joint pdf of the residualé to be written as the product of the
individual pdf's of each residual. If this property does not hold,
an orthogonalisation procedure may be employed.

To ease notational complexity the following definitions are

made:
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x?'kIQ’ 2 [v(3) e Y(3+L) yeusy Y(k)JT (III.57)

ij ok = E{[Y(J) [} 'Y(J+1) recay 'Y(k)]TT : (III.58)
= [E[v(D ], BIYHD ] peae, BIvOIITT

ek 4 cov[(Yj 'k -1?,k] (111.59)

E[(lj k - ij Ik) (:I.J X - :'ij ,k)']i:‘]

* ; ’ ik
Using these definitions the pdf of the gaussian vector x?’ is,

p(x?,k)'= I SRS RN P E R L NP j )
(2m ™ |3k (I11.60)
where n=k-j+l is the dimension of the residual vector.
If a fault has not occurred (III.60) becomes:
o3 = ko - exp{-: ;Xziﬂl} (I11.61)
m=j (27c(m,m)) c(m,m)
)

(3 %) (I1I.62)

ITI.2.1. Joint pdf in the event of step blas in plant state.

The residual sequence in the event of a step bias in the

state is given by (III.Z25) as:

k
YK =y (k) + Y g (kD)
i=0
Hence,
k
E[Y(k)] = E['Y (x) + Z g (k,1)v ]
\ ° 1=¢ & x

and since the residuals in normal operation have zero mean and the
second term in the expectation is non~rxandom,
k
E[y(k)]= izega(k'l)vx
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Therefore the residual mean vector is:

i,k | X T |
¥3'" = 10, Oyeuey ga(e,e)vx,q,., % g, Uk,4)v ] (111,63)

i=6
In the steady state following a fault, i.e, when k>>§, it is shown in
Appendix I.%(a) that,
NV, .

1-(1—Kn)¢

¥ (k)

= —— (ITI.64)
l-=s

b

where s 2 (1-Kn)¢ : (ITI,65)
and K is the steady state value of the Kalman filter gain given by
(I.5).

The residual covariance matrix can be calculated considering,

E L6y (k) =y (k) (y () = ¥ (m) )]

o S o, -
v, (k) + g (k,1)v_ - g (k,1)v
© i=p X i2e ® X

But, v(k)=y(k)

Yo(k)

Hence,
‘coyfy (k)y (m) = 0; k#m

= c(k,k); k=m

This result implies that a step bias in the plant state does not change
the correlation. properties of the ipnovations sequence. The joint pdf

of the residual sequence may then be written as:

. i 5
3k X, {y(i>5:§e 9, (demlv 3"
p(Y''") = m(3,0-1T | gexp{-% n
‘ i=¢ (2mc(d,1)) , c(i,1)

(III.66)
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- where ©(j,6-1) is defined by (III.62).

III.2.2 Joint pdf of residuals in the event of a step change
in 4.

The residual sequence in the event of a step change in ¢, is given
by (III.37) as:
.
Y(k) =y (k) + ) g (k,i,0¢)A¢x (i-1)
(o] b o
i=6
where gb(k,i,A¢) is defined by (III.34)~(III.36). Hence, in this case,
k
E[ )

i=6

EfY (k)]

gb(k,i,A¢)A¢xo(i—l)]

X
iZegb(k,i,A¢)A¢E[xo(i-1)J

E[xo(i-l)] ‘¢E[x0(i—2)] + E[w(i-2)]

¢E[xo(i-2)]

=l g0

I

¢

Underxr sYstem stability assumptions |¢|<l, hence in system steady

state, E[xo(i)]?o; all i»>>0., This result implies that if gb remains
bounded for all k, the mean value of thé residual sequende in the

event of a change in ¢ is zero if the fault occurs when the system

has reached steady state., It is also shown in Appendix I.1l(b) that

gb will remain bounded if |¢+A¢|§l, that is if the change does not
destabilize the system. Under these cénditions, the residual covariance

is,

cov [y (k)y(m)] = E[y(k)y(m)]
k "
E[(Yo(k)+_z g, (ky1,80) 80x (1=1) (v (m)+ [ g, (m,3,40) A8x_(3-1))]

i=6 j=6
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ox icovly ()Y @) = ﬁ[vo (k)y (m) T+
i
+ ]
J=6
k .
+iZegb (k,l,A¢) A¢E[Xo(l_l)’YO (m) ] +

gb(m.j.A¢)A¢E[yo(k)xo(j-1)]+

k m ‘
+BI{ ] g, Gcsi,80)80x, A-D H T g, (m,3,40)8éx (3-1) }]
i=6 i=8

(IIT1.67)
The above terms, the summations in particular, may be calculated
using the fact that a stochastic process x(k) obeying (I.l) has the

following properties [48]:

cov[x(kzx(m)] = ¢m—k var[x(k)J]; k<m
and,
- k-1 .,
varfx ()] = 0%Xvar[x(0)] + J ¢°iq
: igo
k-1 .
= ¢2kp(0) + ) ¢2lq (III.68)
i=0

The first term in (III.68) vanishes under stability conditions in

steady state,while the second is a geometric sum whose value is:

k-1 5 ‘ : -
.: z ¢ lq =q = (When k>>0,
i=0 2 2

hence, in system steady state,

q

var [% (k)] = (II1.69)
1 - ¢2
and, =k
S ¢ 4q
Ccovx(k)x(m)] = (I1I,70)
g \ 2
1-9

Also, since the Yo(i) are independent, Yo(k) is independent of xo(i)

" for all i>k. This fact makes the third sum in (III.67) vanish.
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The last sum is:

m
g, (ks8,00) A9 jzegb(mfjrﬁ¢)A¢E[xo(e-l)xo(j-l)] +
m .
+ gb(k,6+l,A¢)A?Zegb(m,j,A¢)A¢E[xo(6)xd(j-l)] +
+.... + ‘

m ' .
+ g (k,k,00)A¢ ) g (m,3,A0)AGE[x (K=1)X (3-1)] (III.71)
b =0 b o) 0
The expectations can be calculated using (III.68):

A=l
- . 7 21
E[xo(i)xOXj)] = ¢|i 3|(¢2Ap(o) + g 2 ) p) (ITI.72)
n=0

where A=min{i,j}.

Substituting (III.72) in (III.71) ylelds,

A -Lll

2 m [3-8], e & on;
(8¢ “g, (x,6,80) J{g, (m,3,800¢'° 7" (9 "PO+a ] ¢H} +
j=e n=0
+teoot
. A=1
9 m . 2X -7k
+ (89) °g, (kik,09) ] {gb(m,j,A¢)¢‘3 Kl (4 %501 4a I "™}

j=8 n=0

2 X v l1-3] %M ¢ .2n
= 9" ] {g (/1,80 [ g (m3,8)0 (¢ pO+q ] ¢} (111.73)
i=0 j=6 n=0

where Ai=min{i,j}.
The second sum in (III.67) is
m : ‘
jzegb(m,j:A¢)A¢E[yo(k)xo(j—l)] (IIT.74)
Since yo(k) is independent of xo(i), i=0,¢e.,/k~1l, (TII.67) becomes,
m

j=£+lgb(m’j’A¢)A¢E[Yo(k)xo(351)]
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The expectation is:

i-1
1y T j=1-k ;
Bly, (0 x (3-1)]= Ely (o) {¢ xo (k) + nzkaiw(l)}]

where the ai are real constants. Since ‘the w(i) are independent,

j-1-k

E[Y, ()%, (3-1)]= ¢ LYy (k)% ()]

j~1-k
¢J E[{nxo (k) +v (k) -nxo (k/k-1) }xo (k)

031K ok /x)

Finally (III.74) becomes,

m

) g, (s 3/0) A
j=k+1

31Kk /x) . (III.75)

Adding (III.75), (III.73) and c(k,m) gives the desired expression
for the correlation between successive -residuals in the event of a

change in the plant transition coefficient:

Efy(K)y(m)] = c(k,m) +

m
+) 9

b(m:jrA¢)A¢¢J-l_knp(k/k) +
j=k+1

2 X t bi-g], M $ on
+ )" ] fo, i a0 { ] g (mr3,84) (4 “p(O+q ] ¢"H 1}
i=6 j=6 n=0

(I1I1.76)

IIT.2.3 Joint pdf of residuals in the event of additional

plant noise.

The residual sequence in the event' of additional plant noise
is given by (III.38) as,
k

Y(k) = Yo k) + ¥ g ke (1)
i=06



The expeéted value is zero, since both yo(k) and ;x(i) are of
zero mean. The covariance is given by:

k
covly (k) y (m)]= E[{y_(k)+ ¥ g, (k)T (1Y {y (m)+

m
Y g (m,3y_ ()N}
1= ' ~.7C X

3=0
Since, /
E[;X(jw(iif"; O; .all i, and E[T ()L _(§)] = 07 all i#j,
‘the ;x(i) are independent of the Yo(i). Hence,
A
cov [y, (K m] = clk,m + izegc(k,i)gc(m,l)sx
where A=min{k,m}.

The residual covariance matrix is then given by:

oot

. . '
SIS o= Kt B
C Tenmme - —-l PR
o |C9,k
l c
- {
where, -
9 — S ‘
C"k = {c(0,08)+c”(8,8) c”(6+1,08) ... c”(8,k) _1
C C C C
c;(6+l,6) c(6+1,6+1)+c;(6+l,6+l)...c;(6+l,k)
cl(8/k) ... C(k,k)+c;(k,k)
e ‘ —
_ A
and c;(i,j) = mzegc(i,m)gc(j,m)sx (III.77)

It can be seen from the form of (III.77) that the residual

sequence following an increase in the plant noise is not stationary

as well as not white, since in general,
cc(i,j) # cc(i+m,j+m)

- However, in steady state following a fault, it is shown in Appendix

I.1(c) that
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C’(ilj)
(o}

0
Q
O
b
+
)
-
.
+
g
n
Q
[o 2R Y
[ g
1
e

Rt I 5 s (III.78)

where s is defined by (III.65). The forin of (III.78) implies that
under filter stability assumptions,

lim ¢“(i-3j) = O
(i-3) >
i.e. the correlation between residuals fol;owing an increase in
plant noise decreases exponenﬁially with the distance between them.

In steady state following the fault, the covariance matrix may therefore

be written:

CJ'k =| c(j,J)+c (O) ¢ (1) ... c (k) -W
c c c c
c. (1) c(j+1l,j+l)+c (0)...c (k=-1)
é c c
c (k) ¢ (k=1) ... clk,k)+c (0)
c c c

The joint pdf in this case is:

)k . : 8,k.T 0,k =1 0,k
p(x? ) = m(3,6-1) = exp{-%[y e, 1 x } (II1.79)
L (k=-0+1) | O,k X ' :
27 |Cc l

I1T1.2.4 Joint pdf of residuals in the event of step bias in

the measurements.

The residual sequence in the event of a step bias in the

measurements is given by,

. k
Y(k) = Yo(k) + ize gd(k,i)\)y
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The expected value and covariahce of the innovations sequence
are found in the same way as the case of a step blas in the state,
Thus,

k
Ely(k)] = ) g (1)
i=g ¢ y

and the mean value vector is,

.
-3,k Xy . T
137 =10, 0y wuar 908000 peavr ) g (kedDy ] (TIT,80)
1=9
For k>>§, it is shown in Appendix I.1l(d) that
Efva] = (1+ =28 | (1T1.81)

s=1 ¥

Since the step bias is non~random the correlation properties

do not change, .
covly(k)Y(m)] = E[Yo(k)yo(m)] = c(k,m)

The results obtained in the case of a step bias in the measurements,
which are gqualitatively the same as those obtained in the case of g
step bias in the state, imply that the joint pdf can be written as a

product of independent rxandom variables as: L
[y(1)~ ) g (1,m)v_]
3k k , mZe 4~ o
p(y?") = w30~ | exp{~4 k }(111.82)
. i=9 (ZﬂC(i,i)) C(i;i)

2 .

III.2.5 Joint pdf of residuals in the event of a gtep charge in n.

The residual sequence in the event of a step change in the measurement
coefficient is given by (III.51l) as:

k
Y(k) = v (k) + ] g_(k,4)Anx (1)
i=6

‘where the g_ are defined by (III.52)~(III.55),
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Since the xo(i) are random and E is linear,
‘ k
E[Y(k)] = ) g (k,1)AnE[x _(1)]
i=p © °

It was shown in Section III.2.2 that if the system has reached steady
state when the fault occurs, E[xo(i)]=Q, i>>0, Hence, under conditions

of steady state,

E[y(k)] =0

The covariance is calculated by,

E[Y(k)Y(m)]

k m
E[{Yo(k)+izege(k,i)Ango(i)}{Yo(m)+j£ege(m,j)Anxo(j)}J

E[Yo(k)yo(m)]+
i o
+ 5§ege(m,j)AnE[YO(k)xo(j)J‘+

k
+ 1 g (k1) AnELy, (m)x (1)] +
i=6
k | ~om
+E[{ ] g (k) anx (1)} ]
=0 =

) ge(m,j)Anxo(j)}] (III.83)

j=6

The individual sums are of the same form as the sums involved
in the covariance function of the residuals following & step change in

¢. Thus, using (III.73), (IIIX.75), the last sum in (IIL.83) is,

A N
— : 2
131 *p(or+q ) ¢ n)}}' (III,84).

n=0

2 k m 2
(an)© Y {gé(k,i) ¥ {g m/3¢ (¢
. 4=

i=0

where Ai=min{irj}-

The third sum vanishes, while the second is,

m
y g_ (ki) Ang
J=k

Ik o (e /k) (ITI.85)
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Adding (III.84), (III.85) yields the desired expression for
the residual covariance following a step change in the .

coefficient of the measurement eguation:

Efy(k)y(m)] = c(k,m) +

m

+ ge(m,j)Ah¢J—l—knp(k/k) +
35x
k m 22 -Ai
+ am? ] {g 0,0 T g 6123 (6 pcoraq T g2m 3}
. i=e j=e e n=o Y]
(I11.86)

In this case therefore, as well as in the case of a change in ¢,
if the fault occurs when the system has reached steady state, the
residuals retain theilr zero mean proﬁerty but become correlated; It may
be seen that since the 9 and ge are bounded and ¢ is stable, the
correlation given by both (III,76) and (IIL.86) reaches a steady state

value.

'measuremert noise,

The residual sequence in the event of additional measurement noise
is given by (III.56) as,
k
) = +
.y(k) Yo &) iZegf(k,i)cy(i)

Since the cy(i) have zero mean,

Elvyv(ky] =0

_The covariance is given by:
{ ]f Hoy @+ ] "}
ccovfy(k)ym)] = Ef{y_(k)+ ) g_(k,1)g_ (1) {y (m) + 2~ (myp3)z (3T
o i=g £ y Vo j=e-f Y
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Since §y(i) is independent of v(i), all i, ¢ (i) independent of
.;V(j)j all i#j -, it follows that ;y(i) is independent of vy{i). Hence,
A

E[fy(k)y(m)] = c(k,m) + }

) gf(k,i)gf(ml,n.)sy (II1.87)

where A=min{k,m}. ’ J

This result implies that an inérease in the measurement noise
has the same qualitative effect on the joint pdf of the innovations
sequence as the increase in plant noise, i.e. the residuals remain
zero mean but become cbrrelated and non-stationary.

In steady state following a fault however, it is shown in

Appendix I.l(e) that,

-1
cov [y (k),y(m) J= -nc]stm-k_1 {QQEE——— + l}sy; k#m (III.88)
1l - s_2
(n¢K) >
o+ {1--0 1 (ITI.89)
2 y
s =1

where ¢ is the steady state value of c(k,k) and s is defined by
(III.65). Also, as m-k»>», the correlation tends to zero. This
result shows that in steady state following a fault, the correlation
between the residuals decreases exponentially.

The joint pdf of the residual sequence will consist of a pre-fault
residual string and a post fault correlated residual sequence,

. 1 6,k. T 0,k
p(f'k) = 7(5,6-1) , exp{-%[y "] [c.™1

2n5(k-9+l)lcgrk|5

(III.90)

—ll?,k}

where the matrix Cg'k is defined by:
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o, x [
Cf' = c(9,9)+cf(9,9) Cf(9+l,k) ces Cf(elk) 1

cf(e+1,k) c(e+l,e+l)+cf(e+1,e+l) cf(e+1,k)

cf(e,k) cf(e+l,k) c(k,k)+cf(k,k)

L L

(I11.91)
and,
A
¢ (1,3) mzegf(i,m)gfm,m)sy

where A=min{i,j}.and the g, are defined by (III.56).

II1.2.7 Summary of results and comments.

The effects of the type II faults are summarised in Tables 2 and 3.
As it can be seen from Table 2, if the faults occur in steady state,

then they may be classified into two disjoint classes, as follows:

¢.: {faults with effect of nonzero mean of residuals}

1

02: {faults with effect of correlated residuals}

or, equivalently,

Cl; {faults a, 4} (I11.92)

02: {faults b, ¢, e, f} (II11.93)
The no-fault class,

CO: {no fault} (II1.94)

may also be added, so that the three classes fully characterise any
probable condition of the system.
The iesults concerning the stationarity property of the residuals,

in steady state following a fault are quite important. This property,



Effect of faults on innovations in steady state conditions of

~54-

TABLE 2

system and filter,

zerd independence| stationarity
mean
a. State bias no yes yes
b, Change in ¢. yes no
¢, Additional plant
noise yes no no(yes)
| d. Measurement bias no yes yes
e. Change in g yes no
f. Additional
L- measurement noise| vyes no no(yes)
No fault yes yes yes

In the case of additional noise, either in the state or the measurements,

the entries in parentheses denote the steady state
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TABLE 3

Steady state values of mean and correlation of residuals following

a fault.
mean variahcée: - correlation of y(i)vy (3)
. n\)x
a., State bias
l-s
d. Measurement
1 noK
bias {l+ni~—*v
s=1 'y
2 i-3 2
¢. Additional W n'sx S n
+c s
plant noise 1-52 1-52 x

Additional
measurement
noise

K and c represent the steady state values of the Kalman filter gain

and residual variance respectively, while s=(1-Kn)é¢.
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together with the fact that the correlation decreases exponentially,
ensures that time averages are meaningful.[49]. Thus, evén under
faulty conditiéns,the sequence of residual values can be considered to
be ensemble values of the corresponding ¢{istributions and hence on-line
fault mqnitoring is possible.

| A fourth class could also be included, covering cases outside the
main assumptions of the problem. This would include situations where
a fault in the transition coefficients occurs when the system is in the
transient state or situations in which |¢+A¢|>l,'i.e. the change in ¢
destabilises the system. The common feature of the effect on the
innovations sequence of faults of this class, is the introduction of

bias as well as correlation. Therefore, C_ may be defined as:

3

c3: {faults with effect of nonzero mean and correlation}

or equivalently,

C3: {(b or e in transient state) or (destabilising b)}
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IT1I.2.8 A multivariable extension.

e

The exXtension of the results obtained in Section III.l.2 to
the ﬁultivariable case is straightforward. Time=-varying systems can
also be treated. The case of additional measurement noise will be
developed as an example.

The multivariable time-varying version of equations (I3I,19)-(III.20)

is the set of equations described by,

x(k+1)

®(k+1l,k)x(k) + w(k) , (I11.95)

y(k) = H(k)x(k) + v(k) + ok,e_g_y(k) (I11.96)

where ¢ and H are\Paramétery matrices of appropriate dimensions,
and w(k), v(k), Sy(k) are mutually independent random gaussian vectors,
with zero mean and covériance matrices Q(k), R(k), Sy(k) respéctively.
Each sequence is assumed white and independent of the initial state x(0).
Under these assumptions, it is shéwn in Appendix I.2 that, corresponding
to equations (III.56) and (IIT,52)-(III.55), the following equétions
hold in the multivariable, time-varying case:
k
Yk =y k) + iZe G(kfl)Ey(l)

where the matrices G(k,i) are calculated from:

G(i,3) = -H(i)®(i,i-1)F(i-1,3); i>j

F(i,j) = ¢(i,i-1)F(i-1,3) + K(i)G(i,3); i>3
G(i,i) =1

G(i,3) = F(i,3) = 0; i<j

‘where K(i) is the Kalman filter gain matrix.



~58~
Therefore, since the Ey(i) have zero mean,

E[y(k)] = O

and,

I o1

G, (1) }{lo(m)+'-z_

covly(k)y (m)] = E[{xo(k)+
i=0 j=6

Gm, Nz ()]
i Y

A
= By (0y m) + 7§ G(k,i)Sy(i)GT(m'i)
i=6

where K=min{k,m}.

These results are similar in form to those obtained in the scalar
case,equation (III.77).

If a time invariant system is considered, then when the filter
has reached steady state, the residual sequence following a fault

has the following property:

E[l(k)y_T(m)]= HOS e(WT)m‘k

14

where S, 6 is the solution of the discrete time Lyapunov equation,
r

S =T+ WS WT

00,6 ©,0

=
Il

(I-KH) O

The correlation matrix in the event of additional measurement noise

is similar in form to equation (III.88) which describes the correlation

in the event of additional measurement noise for the scalar system.
Thus, it is seen that the results ¢oncerning all types of faults,

obtainéd in previous sections, may be carried over in a straightforward

manner for the case of multivariable, time-varying systems.
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CHAPTER 1IV: FAULT MONITORING SCHEMES

IV.l General procedure for fault monitoring.

The results obtained for the joint pdf of residuals in the event

of a fault occurrence, which are summarised in Section III.2.7, lead
quite naturally to a hypothesis testing formulation of the fault
monitoring process. Thus the hypothesis that the generated residuals
belong to class CO against the hypothesis that it belongs to an
alternative class will be tested.

As was .asserted in Section II.4 the fault monitoring scheme
must be designed in such a way as to be able to be applied in a wide
range of practical situations with various requirements of cost and
complexity. The knowledge of the effects of the individual faults
on the Kalman filter innovations can be used to design a scheme that
operates on two levels. The first level is a simple fault detection
mechanism which also performs partial isolation of the failed parameter.
On the sounding of an alarm from this first level, the second mechanism
is acﬁivated. This performs the functions of fault isolation, estimation
of time of occurrence and size of fault and subsequent'system reorganization.,
Furthermore, if requirements so dictate, the two levels can be used

independently of each other. s " i -
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Iv.1l.1 General comments on hypothesis testing.

To test any hypothesis on a basis of“a random SQmple of observations,

the sample space. {{(i.e. all the possible sets of observations) is ddivided

into two regions. If the observed point, say v, falls into one of these
regions, say w, the hypothesis is rejected in favour of an alternative

o ' A}
hypothesis; if y falls into the complementary region {-w the hypothesis is

accepted. w is known as the critical region of the tests and Q-w is called

the acceptance region.

When making statistical hypothesis tests, the possibility of erroneous
inference exists. This falls into two categories for the case where a null

hypothesis H

o is testedﬁagainstkan alternative hypothesis Hl:

Type I: H, is rejected when it is true.
Type II: HO is accepted when it is false.
The probability of a type I error is equal to the size of the critical

region used, termed the significance level of the test and denoted by a.

Thus, -
P H =
[vew iyl = a | |
In the present context o will be defined as the probability, Pf, of a false
alarm. Hence,

P[Yew| HO] = Pg ‘ o (¥v.1]

X

The probability of a type II error is a function of the alternative

hypothesis Hl' termed the'Qperating‘éharacteristic of the test and denoted

by B. Hence,

PlyeR-w| HJ =8

Plyew| H;] = 1-B
 The complementary probability 1-8 is called the power of the test and

in the present context it will be defined as the probability, Pd, of
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correct detection. Thus,

Plyew|H ] = P, (IV.2)

For a given Pf, solution of (IV.l)hwill generally yield an
infinity of subregions all obeying (IV,.,1l). In this case w is chosen
so that Pd is maximum, This is a fundamental principle in statistical
decision theory first expressed by J. Neyman and E, S, Pearson:

A critical region whose pbWer is no smaller than that of any

other region of the same size for testing a hypothesis HO against an

alternative Hl' is called a best critical region (BCR), and a test based

on a BCR is called a most powerful (MP) test.

When testing a hypothesis Ho-against a class of alternatives, i.e.
a composite hypothesis (for example, when testing for a zero mean against
nonzero mean) a MP test could be found for the different members of Hl

(an infinity for the aforementioned example), If there exists a BCR

which is best for every member of Hl then this region is called uniformly

most powerful (UMP) and the test based on it a UMP test.

Iv.1.2 Simple detection-partial isolation algorithms,

The first stage of the fault monitoring process involves fault
detection. At this level, a decision is made, at each measurement update,
of whether a fault is present or not., Using the results of Table 2, it
can be seen that simple statistical tests\fof the mean and corfelation
properties of random variables may be used to decide if a fault has

occurred or not. Further the disjoint nature of the three classes Co'

1 2 1 2

element the isolation is unique but otherwise further isolation is needed.

C.r» C., permits partial isolation of the fault., If ¢, and ¢, contain one

A decision flowchart for the first stage is shown in £fig.5.
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proceed to next stage

Fig. 5 The detectionrpartial isolation stage.
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. Decisions regarding the property of whiteness and zero mean

will be tested sequentially using the concept of Control charts.

These will be used to check the properties of whiteness and zero mean

and a decision will be made at every time,according to fig. 5.

IV.l.2.1 Control charts.

Control charts are used in monitoring the statistical state of a
process whose measurements are available.sequentially in time., Some
statistic w(sample mean or sample range etc.) is computed from successive
samples of size n and blotted on aﬁgraph ¢ontaining lower and upper limits
corresponding to the critical region of the hypothesis on w under test.

If the statistic w is distributed normally with mean mw and variance 53,.

where mw and sw are calculated a-priori, then typical limits are mw+3sw

for the upper control limit (UCL) and m -35w for the lower control limit
w

Control charts will be used for the first stage of fault monitoring

Yi+l,j+l, Y

an appropriate statistic will be calculated and plotted on a

. . . i,j.
as follows: given successive samples of residuals 1_'3,
i+m,j+m

corresponding control chart with the precomputed UCL and LCL., A decision
that a fault has occurred will be made when the statistic falls outside
its normal operation levei for a specified subsequent number of times,
This procedure will decrease the probability of type I errors. This may

be seen in the following argument:

Let d 1l if a decision that a fault has occurred is made

d = O if otherwise
Then d is distributed binomially and since the probability of a type I

error is o at every point, the probability that a type I error is made

: : . m
at m successive times is o, A logical flowchart for a computer-operated

control chart is shown in fig. 7.
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UCL e e s e -—— ——

ICL pr———— e e e e e - —_———

p batch number

-
-

10 20 30 40 50 60 70 80 90

Fig. 6 Shewhart control chart
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!
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Fig, 7 Flowchart for computer operated control chart.
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IV.1.2.1.1 Testing for the mean.

If class'C3 is included as a possiﬁle fault case, the mean of the
residual sequence will have to be calculated from a series of correlated

measurements, if such a fault occurs., If ¢, is excluded,the sample mean

3
willybe used only for uncorrelated measurements. This can be acéomplished
by testing first for independence and then for the mean. If the
independence test is positive c2 is selected, otherwise the mean is

tested to decide between %.and co; both of these classes contain

independent residuals,

Tests for both situations will be presented.

B EariTle moam.
The test statistic commonly used for testing,
H .o _
of Y(k) =0

against Hl: ;(k)

is the sample mean defined by:

;l(k) #0; k=i,...,7

= § oy O av.3)

< 1>

Il e~

k=1

Under the null hypothesis, the sample mean is normally distributed
with zero mean and variance c/n, where ¢ is the steady state value
of the innovations sequence and n is the size of the sample.'

N

The probabilities Pf and Pd are respectively given by:

L c
Pe =PI |Y|>$E zpf/z] (IV.4)

ons R R S Nl RN
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where za is defined by:

® 2
l - "
Pl[z>z ] 2 = [e 2 dz = a épdf of the standard normal didstribution)
a V2w 2
a
z 2 ,
a1l ~hy©
and o(z) = ——'fe 8y (cumulative df of the standard normal
V21 —o distribution)

Pf, Pd and n are functionally related in the two equations defining

Pf and Pd- Pd also depends on the unknown value ;(k). Typical values for
Pf are 0.1, 0,05 though this will of course depend on the specific
application requirements, Having fixed Pf, then Pd' n and the critical

]
region ]y| can be chosen using equations (IV.4)-(IV.5).

The UCL and LCL values are given by:

UCE = (E
T n sz/Z'
where z ids determtned from the
= Pf/2
ICL = - S-z standard normal distribution given P
n Pf/2 £

The graph.of l—Pd, called the operating characteristic (OC) curve is

shown in figs. 8 and 9 for different values of the sample size n and

for Pf=0.05 and 0.0l respectively. As it can be seen from the graphs,
increasing the saﬁple size increases Pd' but at the expense of an increase
in the detection delay time, since by averaging a larger number of
residuals the effect of a fault is smoothed out.

A

The sample mean ; can be calculated iteratively, thus reducing the

amount of computation in on-line operations, Define,

as 4 3
o o=i 1
v Tym
k=1
then,

Al . j+1
Li+175+1 1 )
Yl 7] = _r: Z ,Y(k)

k=i+1
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Fig. 8 Pf=0.01

l-p

0.5}~

Fig. 9 Pf=0'05

Figs, 8,9 Operating characteristic cuxves for the sample mean test
plotted against true mean/variance.
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3
=S Lvmw v v - vw]

k=1 '

21,3
Y

l .
+Hvarn-v@}

If the residuals are correlated, the sample mean test may
still be used but its control limits have to be modified accordingly.
Statistical tests for the mean in the presence of correlated measurements
do not . .appear to exist in .the statistical literature.. This means that
in such cases the robustness of the appropriate tests must be examined
when the assumption of independence is violated. .

To calculate the effect on the sample mean control limits, consider
the variance of the residual sample mean, which is now calculated using

the formula {25]:

A+ LK X ]

2 1 _
varl{yl = —-2{nc+2(n—l)cpl+2(n—2)cp2

n

where Di is the ith order correlation between the residuals and ¢ is
the steady state variance of the residuals under the null hypothesis,
Then,

n-1

c | 2¢
-+ 2 z (n=k)p
n

n k=1

var[y
[v1 X

R
Lo
H
+
(&
=~
°
~
N

k
If the process is autoregressive of order 1, then pk=p . Hence, for

such processes,

Loy = Yo =75
'ok=l k=1
Consequently,
v B —2p c lip (IV.6)
var = =41 + = — ]
Iy n { 1-p } n 1l-p
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This result implies that in the case of correlated measurements,
the limits of the control chart for the sample mean have to be modified
aceording to (IV.6). If the correlation is negative the limits have t&
be decreased, whereas if the correlationhis positive the limits have to

be increased, since,

l+p < 1 if p<O
1-p
> 1 if p>0
In the first stage of the fault monitoring process the correlation

is not known, therefore if the occurred fault induces large p the mean

test will give erroneous results.

b. Sign test.

This - is a non-parametric test used to test hypotheses on the value_
of the median of a population. Since the residuals are normal under all
hypotheses the median is’equal to the mean and therefore this test can
be applied.to test for zero mean.

The sign test procedure is as follows: the number of positive
residuals in a batch is calculated and compared to two thresholds which

depend on the sample size n and significance level q. Thus if,

n. < (numbexr of positive residuals) < n2; accept H

1 o

otherwise HO is rejected.

Table 4 is a table of the percentage points of the symmetric
binomial distribution for different sample sizes and significance levels,
It is shown in [51] that it may be used for the sign test as follows:

. . + -
i, Count the number of values above and below zero, say n and n ,

ii, Choose the smallest of the two values, say n+.
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TABLE 4

Percentage pdints of the'symmetric binomial distribution.

Sample size Probability of false detection

n ' P_=0.10 | P_=0.05 P _=0.02 P _=0.01

£ £ £ £

[
[$,)

NN OO TR PR WWWNNNDHEEPRPI

qmmmmmmpppwwMNMHHHFI

AL BB WWWNNDMNNEPERFEHEFT

30 11 10 ~ 9 8

40 15 14 ' 13 12
45 17 16 15 14
50 : 19 18 17 16
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iii., Compare n+ with the table entry for chosen n and d, say na.
iv, If n+<na, reject HO; otherwise accept it.
The entries in Table 4 may be modified to indicate percentage points
for the number of positive residuals., If for a sample size n the table
entry is . it follows that the number of positive residuals can vary

from na to n-na. The thresholds nl and n, are then chosen to satisfy:

2

Hence nl and n2 represent the UCL and LCL respectively.
Tables 5 and 6 show values of l—Pd for Pf of 0.05 and 0.0l

respectively [56].

The number of positive residuals can also be calculated iteratively.

+ N . [} .
Let n, 3 be the number of positive residuals in the residual vector x}'J
i,

and,

o}
It

1if v(i)>0

0 if y(i)<0

(the best procedure for residual values that are equal to zero is to
disregard them and reduce the sample size by their number, This is also
intuitively appealing since a zero value contributes equally to both
negative and positive values). |

Then,

The robustness of the sign test in the case of correlated residuals,

can be investigated similarly to the case of the sample mean test,

Let, n 1 if v(i)>0

i

=1 if ¥i)o
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TABLES 5,6

:Values of l—Pdv for the sign test

Table 5 Table 6
Pf = 0.05 Pf = 0.01
n r l-Pd n r l—Pd
8 o .00781 (5) | (0) |.0625
9 (o} .00391 6 o} .03125
10 0 .00195 7 (o] .01562
11 (¢} .00098 8 0 .00781
12 1 .00635 9 1 .03906
13 1l .00342 10 -1 .02148
14 1 .00183 (10) | (2) _1,1Q938
15 . 2 00739 11 .011
16 2 .00418 12 2 .03857
17 2 .00235 13 2 .02246
18 3 .00754 14 2 .01294
19 3 .00443 15 3 .03516
20 3 .00258 16 3 .02127
17 4 .04904
25 5 .00408 18 4 .03088
30 7 |.00522 19 4 |.01921
35 9 .00599 (20) | (4) |.o01182
40 115 |.00643 20 5 .04139
45 13 .00661 (20) (6) {.11532
50 . |15 .00660
25 7 .04329
60 19 .00622 30 9 .04277
70 23 .00558 35 |11 .04096
80 {28 .00968 40 | 13 .03848
°le} 32 .00743 45 15 .03570
100 |36 |.00664 5o | 17 |.03284
60 | 20 .02734
70 } 26 .04139
80 | 30 }.03299
90 35 .04460
100 | 39 .0352
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Then, E[ni] (oK

var[n ] 1
1 . .
The random variable ni may be associated with the positive and negative

residuals., Hence, if the y(i) are correlated,

co¥[ni, ,
1"ni+j] ‘ E[nini+j]

2 . -1 .
= =S
. in pj [25]

where pj = E[y(i)y(i+§)]

>

2 -1 5 (s)
If p = pJ = 254 J
pj P, E[nini+j] - sin “p pj

The variance of the sign test statistic will be given by:

s
var[n, .] =l ] {1+ = ) (n-h)pé )}
' n h=1
The sum is equal to,
el i
) =sin Tp
h=1 "

Expanding the inverse sine in Tayior's series about O,

=1 -1 h h
sin ph ( 4 sin "p) p+ O(OZh)

4
p 0=0

ph + O(p2h)

i

Hence if orders >2 are neglected

(s),2
‘ eI vy 120
var[ni,j] = n K {l + 'ﬂ'(l-p)}
=[o(s)]2 T+p (2-1) (Iv.7)
n T (1-p) :

The modifying factor in this case is appreciably less than the factor
appearing in (IV.6). This suggests that the sign test will be more

robust in departures from independence than the corresponding sample

mean test.
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Iv.l.2.1.2 Testing for whiteness.

Testing for whiteness is a common rééuirement for a number of
identification algorithms that appear in the control literature., Most
methods however require a large sample size (>500) and are thus
inapplicable to the case of on-line fault detection. These methods
include: plotting of the sample autocorrelation coefficients [35],
[52], hypothesis testing on the diagonal form of the correlation
matrix [53], Stoica's test [54] and others.

Thg_large sample size fequirement for the above tests is due to
the fact that the probability distributions of the statistics used
cannot be found for small sample sizes and therefore approximations
to the normal distribution have to be made by using an appropriate
sample size.

Three tests for whiteness were investigated. These include two
parametric and one'non-parametric:

i. First order serial qorrelation, r_,

ii. Sample variance §2.
iii, Rank correlation.,

The test on the variance is included since, as it can be seen from
Table 3, the assumed variance is the correct one, only when the residuals
are white., Error in the variance therefore implies non—whiteneés.

All of these tests’are well documented in the statistical -

literature and a brief review of each method is given here.
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a., First order serial correlation.

The first order serial correlation is defined by

j=1 - .
) {(vam) -$1'J)'(y(m+l) -?l':')} .

m=i
r =

1 5 .
T ym- 32

m=1

This form is used for mathematical and computational convenience.
For small sample sizes (<20) more accurate forms may be used. f25].
The statistic r, is distributed asymptotically nqrmal with mean . -
-1/n-1 and variance 1l/n, However it is shown in [55], that r) is
noérmally distributed for small sample sizes as well (n=10). |

Thus confidence limits for hypothe#is testing can be found in a

similar way to that used for the sample mean.

b, Sample variance.

The variance is calculated from the saﬁple by the formula,

>

3 I

2 _ 1 2i,j 2

st =2 ] (ym=yTT)
m=i

Confidence limits for testing,

2

2
against Hl: c #c¢c= oy

are found using the fact that the quantity

2 o oy
n-1 02

o et i 2 '
is distributed y with (n-1l) degrees of freedom. It then follows that
the relation
I\2 1\2
(n-1)g < o <'(n—l)s
2 .

2
xn—l,‘za xn—l.l-lzot
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will have a probability of 1-a of being correct [51]. Equivalehtly,

2
*n-1,1-4a° _ a2 Xn-1,5°
n-1 n-1

represent the confidence limits on g2 with a probability of type I

error a, Hence, the UCL and LCL are given by:

2
X c
_ "n=1,%aq
UCL = — (Iv.8)

2 [
Xne1,1-%q

LCL = ——*5

(Iv.9)

A

The power of the test is given by::

2 2 1
P —

‘l‘ ] (1Iv,10)

2 2 1-
ﬂ(cl) = P[Xn_l< A2

X

where A =

.2
2.2
(o]

Fig. 10 shows some power curves for P_=0.,05 and n=3, 1O, 30.

£
The variance and the first order serial correlation, as indeed

correlations of higher order can be calculated iteratively. The

equations describing the evolution of correlations are developed in

.‘-
Appendix I.3 . These.are:

1. 2 5 i D4 8 .
+ P v a-n - ad @yt

[\
n

iiY(j)-Y(i-l)}

and c%'can be calculated from c;_ using:

1

T These results have also been submitted in the form of a Technical

note paper  for publication in IEEE Trans. on Aut., Control.
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Fig. 10 Power curves for the two-tailed x2—test at the 5% level

of significance.
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3

Sk
n

]
+ ¥ yk)yx-m)}
k=k,

1 24 4 3 3. 21
= {-m Y1377 - (@depd) ¥

where,

qi_l = Y(j-n-m)

g

] 3 .
pi = Py ~ Y{i-n+l)
j 2i,3

3 _
o= 9o = 1Y

)
il

and éi denotes the sample serial correlation of lag m calculated from

2_a]

i,3 N
] =co'

the residual sample Y ~. Specifically the variance, ]

3
1

and the

first order serial correlation rl=é can be calculated iteratively

using the above formulae.

C. Rank correlation.

The rank correlation coefficient is the non-parametric equivalent
to the standard correlation coefficient of two sets of variables. The
usual procedure for the calculation of the rank correlation coefficient

for a set of values xl,yl; X 1Yoieeci xn,yn, is to replace each xj, yj

2

by their rankings x; and yg among the x's and y's respectively, and

calculate: n

where d, = x’=y7.
J j "3

If serial independence is to be tested, the set {xj} is replaced by
the set {j}, while the set {yj} represents the population values,

Therefore, to test for whiteness of the residual sequence, calculate,

% {m=1+1-y* (m) }2

m=1

¥’ =
n(n2-l)




~80~

where y”(m) is the rank of y(m) among the vy(i)‘'s,
The calculated value of r” is then compared to its ICL and UCL

values which are found from Table 7, for different Pf.

Iv.1.3 Detection-isclaticn~estifation aldgorithms,

‘

The algorithms described . in this section may be used to
provide all three functions of the monitoring process. 1In this‘case,
the computational time will increase, as the statistical calculations
become more complicated, but overall system performgnce will be improved,
as a result of simultaneous detectiﬁn, isolation and identification.
Alternatively, the algorithms may be used in conjunction with the simpler
detéction-partial isolation algorithms, in which case the complexity
will be introduced after the detection of a fault.

The statistical procedures for this stage, depend on maximum

likelihood estimation (MLE) and particularly on the generalised

likelihood ratio (GLR) test. A brief description of these procedures

will now be given.

Iv.1l.3.1 Likelihood ratio tests, MLE and GLR tests.

Likelihood ratio (LR)~"tests are used in hypothesis testing when
all parameters of the pdf's under both hypotheses are known. Then the

LR test statistic is defined as:

1
x .
0O

p(ilHl)

H
A A 2
H

p(x|H)

where P(EJHi) is the pdf of x under H, and A is a threshold value

chosen to give required values of P_ and P This is usually

£

accomplished by fixing Pf=a, and choosing A to maximise P.., by solving
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TABLE 7

I

Critical values of the rank correlation coefficient

|
0.1 0.05 0.02 0.01

5 ) 0.9 - - -

6 0.829 0.886 0.943 -

7 0.714 0.786 0.893 -

8 0.643 0.738 0.833 0.881
9 0.6 0.683 0.783 | 0.833
10 0.564 0.648 | 0.745 0.794
11 0.523 | 0.623 |/&™S6 | o.818
12 0.497 0.591 |'o0.703 0.78
13 0.475 0.56 0.673 0.745
14 0.457 T8 845 0.646 0.716
15 0.441 0.525 0.623 0.689
16 0.425 0.507 0.601 0.666
17 0.412 0.49 0.582 0.645
18 0.399 0.476 0.564 0.625
19 0.388 0.462 0.549 0.608
20 0.377 0.45 0.534 | 0.591
21 0.368 0.438 | 0.521 0.576
22 0.359 0.428 0.508 .__giégg___,
23 0.351 0.418 0.496 w49
24 0.343 0.409 0.485 0.537
25 0.336 0.4 0.475 0.526
26 0.329 0.392 0. 465 0.515
27 0.323 0.385 0.456 0.505
28 0.317 0.377 0.448 0.496
29 0.311 0.37 0.44 0.487
30 0.305 0.364 0.432 0.478
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for X,

[ p(h|Ban = o, [44].
A

’

I

Tf samples of n independent observations which have the same
distribution are made, the joint probability of the observations regarded

as a function of an unknown parameter ¢ is éalléaf;hgflikelihoodffpnction

(LF) of the sample and is written:
L(x;8) = f(ilfé.)f(izié) ,..f(_:gn;g_)

The MLE §_is the value of §, within the admissible range of values,
which maximises L(x;£). That is { satisfies,

L(x7E)> L{xX;E)

If,the LF is a twice differentiable function of E, throughout its

range, stationary values of the LF, where they exist, will be given by

the roots of,

A sufficient , though not necessary, condition that any of these
stationary values, say s be a local maximum is that,
L™ (x;8) <0

In practice, it is often simpler to work with the logarithm of the LF
than with the function itself. Under the above conditions they will have

maxima together, since

BlogL = Ef
13 . L

and L>0. Therefore solutions of,

Q-ogI)' =0
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ére sought, for which,

1
( logL)' < O,

ML estimators may be used in hypothesis-testing where one or both
of the hypotheses contain an unknown randdém or non-random parameter,
A-procedure commonly employed in this case is the GLR test., It consists
of calculating the ML estimate of the unknown parameter under both
hypotheses, and then using these values to form a likelihood ratio test.

The value of the LR is then compared to a given thteshold and a decision

made depending on whether the LR is above or below the threshold.

Let the joint pdf of the sample under Hi be p(ﬁJHi;gg, and
max p(EJHi;gj = p(ﬁjHi;gi)
Ee:i

The GLR statistic is then calculated by,

plx[Hyigy, .1

H
>
< A
H

P(X Hyiko) Hy

or equivalently,

s

B

1nA

g -lnP(EJHl;gi) ~- lnp(ﬁJHo;go)

oAV
'_l
=}
>

0

It is in general difficult to obtain the values of Pd and Pe

for the GLR test because of the complexity of the probability distribution

of its statistic. However, bounds on P_ and P, can be calculated

£

using approximate formulae for the distribution of Ag‘[44]' Alternatively,

simulation methods, using Monte Carlo techniques may be used for the

evaluation of P_ and P_.
da f
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Inrtheory, fhis érocedure may be extended in situations wherém£he
alternative hypotheses are more than one. In this case the decision
space is divided into hyperplanes, each of which corresponds to given
hypothesis, This idea is illustrated in.fig., 1ll. for the case of three

hypothesééwﬁgjmﬁl: H2. The plane is' divided into three régibns and the

2 .
point (logA;, logAg), where A;, AZ denote the GLR test values of Hy

against Hl and H, respectively, is used to decide which of the hypotheses
is more likely. 1In tests where the total probability of error is to be
minimised, a sensible procedure is to choose the hypothesis with the

largest a~posteriori probability value. [44].

2 ¢

InA
g

"Fig. 11 Multiple hypothesis decision regions.
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IV.1.3.2 Null and alternative hypotheses for the GLR test.

I

In Section III.l.2.it was shown that the Kalman filter residuals

may be modelled as,

yk) = Yo(k) + g(k,£)
for any system condition. If no fault occurs, g(k,£)=0, and hence,
v (k) = yy(k)

Here, £ is an unknown vector whose components are the time of the
occurrence of the fault and its magnitude. Also, in all the cases 6f
interest,

gk,£) = g(k,8)Ap
where Ap is the fault size and § the time of fault occurrence.
Therefore, in cases where two alternatives exist, the two

hypotheses may be written:

H. : vk = 'Yo(k)
‘, Hl : Y(k) = Yo (k) + g(k,_E_)

Since only Hl contains £, the GLR test is:

1,3 H
p( B s8) -
Ag -’(—. 3 - < A
(y "7 H)
p(y "7 |H, H

If the GLR tests are used in conjunction with the simple detection
partial ‘isolation algorithms, both hypotheses on the test will be

hypotheses of faults., There can be two possible pairs, if the monitoring

is restricted to the parameters of the noise sequences:
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1. Ho: Y (k)

Yo k) + g,(k,8)

Hi: Yk = Yo(K) + gq(k,E)
2, Ho: Y(k) = Yo(k) + gc(k._g_) o

H, y&) = vy k) + g.(k,E)

The first pair of hypotheses will be tested if the occurred fault
is a bias in the state or measurement while the second pair will be
tested if the occurred fault is additional plant or measurement noise,

In both pairs the GLR statistic will be of the form:

2 H
R e e I §
H

A -
9 plylEggy) Hy

GLR tests whose null and alternative hypotheses are hypotheses of
fault will be called composite, otherwise they will be called simple.
Both composité and simple GLR involve the maximisation, with respect to
the unknown parameters, of the joint pdf of the residual sequence under
faulty conditions. Since the residuals can be either of zero mean and
correlated or of nonzero mean and independent, the maximisation of

the pdf under these two conditions will be investigated.

Iv.1.3.3 Maximisation of the joint pdf of residuals in fault

conditions (a) or (d).

The joint pdf of the residuals in the case of a step bias of size
v at time §.in the state or the measurements is given from (III.66),

(111.82), by,
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1
{y(d)- zq(i,m)v}2

P EE 0,0 = m(y,6- T - exp{~y —2= }
i=9 (2mc(i,i)) c(i,i)

where g stands for either ga or gd which are given by (III.22)-(I1I.24)
and (III.42)-(III.45) respectively, and v for either Vx or vy.

Taking logarithms,

m
L Dym= T gm,i)v)?

1np (y: 'k|H V) = Z(3,8-1) - % ) 1=0 (Iv.11)
m=6 c{(m,m)
where,
| K Ol vm
z(i,6-1) = —5{mzj 1n{2mc (m,m) }- mZ_ e } (1v.12)

The range of values of the unkrown parameters ® and v are defined

by the following sets:

+
0 = {8: j<b<k; 0eN } (Iv.13)

= {v: v_<v<v : VeR} (Iv.14)
1 u

Since the first term on the RHS of (IV.I2) is independent of 8, the

following maximisation is required:

‘m
o=1 2 K {Y(m)-ize.g(m,i)v}z |
13?’5{ L omw L ow o v
veN

Alternatively, the minimum of the negative of (IV.1l5) can be found.

At a minimum, partial derivatives vanish, hence solve first for v,

{ Z Ym g {y (m) ~a(m) y}° }

c(m,m) c(m,m)

L § a(m) {y(m)-amy}

c(m,m) =0

m=0
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m
where a(m)= Z g(m,i)
i=0

This vanishes if,

Z a(m)x (m)
m=0 ¢ (m,m)
Vo= (IV.I6)
ko 2
X a“ (m)

m=6 c(m,m)

Substituting (IV.16) into (IV,.I5) yields an expression for the optimum

0:
g L SEEy
c¢(m,m
max  { v Iciz)m) -2 m:e 5 } (Iv.17)
6e0 m=y ©‘P’ 2 o
¢(m,m

m=6

The first term is independent of 6,hence 6 is the value of 6 that

maximises the second term in (IV.17). If 6 is substituted in (IV.16)

A

¥ is obtained. Finally ® and v are substituted in (Iv.11l) to yield

the desired expression :

a(m) Y (m)
{ EA ¢ (m,m) }2
1np(f’k|Hl,§,3) | Z 1n27c (m;m) Y((m;)} 4+ 022 (1Iv.18)
m=3j my

a (m)
ZA ¢ (m,m)
m=0

The logarithm of the GLR test statistic will then be:

> ~ . Hl
- ik " 'k >
Inh = Inp(y~""[H,,6,v) - Inp(y" ""[H) < 1ln)
g : H
(o)
{Z a(m)Y(m)}
~ ¢(m,m) Hl
= m;e > z 1o\ | (IV.19)
(m) HO

m='éc(m,m)
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Iv.l.3.4 Maximisation of the joint pdf of residuals in cases

{(c) or (f).

The joint pdf of the residual sequence in the case of additional

"plant or measurement noise is given from (III.79), (III.90) by;

1 i,
2 %m.,0,8) = 7(3,8-1)——— expl-k Y C 1y}
L 1 21Tlm|C|1! -

where s stands for the variance sx or sy of the additional noise and

0,k and CG,k

Yr C stand for y respectively.

Taking logarithms,

- | -
~21np(y’ " |H,0,8) = =21nm(3,0-1) + nln2m + Inc| + y'c™ly

Let,

e

£(8,8) & -21nm(3,0-1) +Inlc| + yTc iy (IV.20)

The minimum of £(9,s) with fespect to 6 and s has to be . found.
C can be written as the sum of two terms as:

Cc

diagfc(i,i)] + sC”

. E + sC”
where C” is given by (III.77) or (III.91).

UnfSrtunately, in this case the maximisation of £(9,s) does not

yield compact analytical solutions., Consider for example,

af(g,s) _ trfc-l ac _ Tc-l EE?C‘l
ds ds “ds

1

-1 . Tl . -
er[cc?] - y ¢ ecTy (Iv.21)

At a minimum (IV.21l) vanishes, Hence to find s (IV.21l) has to be

solved for every 6ec0 and the pair (§,s);that minimise (IV.20) chosen,
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The variance s may be bounded, but an added requirement is that
T - i
C >0 or ‘x” (E+sC )§_> 0; allng

Since the entries in E are variances, E ig positive definite. Let,

Y

X = E ‘Wz
. ‘ =% =k -1_ T
where W is the orthogonal matrix of e-vectors of E' “C“E and W "= W .
Then,
2TW B IEE Wz + sETwTE'l’c’E']’wZ >0; all z
or j?g + SE?AE > 0,
TN

where A is the diagonal matrix of real e-values of E ‘C”E 2. Then

E?(I+SA)E_> 0; all,g_ or

l+s>\i >0 ; all i

If the e-values Ai are all positive, then the condition

s >0

is wufficient. If negative e~yalues ekist,

O < 8 < - _L_

Xmin

where A;in is the smallest negative e-value.

“The numerical minimisation ¢f the likelihood equation, given by
(IV.20), may be performed in the case of scalar systems by one of several
methods.

Firstly, in situations where the minimum s is known to lie in a
finite interval, numerical minimisation algorithms for functions of one
Yariable can be used. Such‘a method, using cubic polynomial curve fitting
is used in the simulation tests.

: . Bf(e,s)
Secondly, as it can be seen from (IV.21), —————— 1is a polynomial

oS
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of degree 2n-1, whose coefficients can be calculated (Appendix I.4)
and its real roots extracted by numerical methods. An‘axhaaStiVe
search may then be carried out to determine the minimising root.

ThirQly, if the interval in which shis constrained is sﬁfficiently
small, it may be discretized. The value of s that minimises (IV.20),
can then be found by searching through the interval. This procedure
would have to be repeatedvfor every '@ and the minimﬁm pair fe,s) picked.,

The number of subdivisions Will depena on the required accuracy,
though for mosﬁ applications’a hundred steps should be adequate.

The above methods will work satisfactorily for scalar dynamical
systems, where s will be a real positive scalar, Thevamount of
computation required should not prove prohibitive for modern computer
systems, A different approach must however be adopted in multivariable
systems, though it should be pointed out that the difficulties in
obtaining the absolute maximum of the likelihood function should not
invalidate the proposed method. In such cases the values of the
likelihood function at different points in the parameter space may be
used to make relative statements about the likelihood of one parameter
value versus the another. Also,in cases where the observation vector
can be processed as a sequence of scalar components, scalar minimisation
procedures may be used,

- The‘evaluation of (IV.20) requires the computation of the determinant
and tﬂe inverse of C, This can be done either‘by direct computational
methods or by orthogonalising the residual sequence. The orthogonalisation
results in a diagonal covarianc¢e matrix whose inverse.and determinant can
be found trivially. The Gram—Schmidt iterative procedure can be used to
sequentially uncorrelate the residuals. - The following recurrence relations

are used [57]: '



-92-

[o} (6,8 = C(ele)
‘;’wi 3l timc,(dm)
wited) = clig) - m=6 Sy (Mem)
‘ i-1 c2(i;h)

c (1,4) = c(i,i) - ]

wwW I cww(m,m)
i-l‘cw(i,m)Yw(m)

Yw(l) = y(i) - z = (mom (Iv.22)

m=0 ww

where yw(i) is the whitened residual sequence,

cw(i,j) = cov[yw(ihy(j)]
c&w(i'j) = cov[yw(inyw(j)]
and c(i,j) = cov[y(iby(j)] as given by one of (III.77), (III.%9l).

Using the new whitened sequence, the determinant and inverse of

its diagonal covariance matrix is given by:

EIW |

[
Il
D

lcww| cww(i'i)

"
Il 1R

and ln|wa| 1ncww(i,i)

i=6 !
-1 =1
Also Cow = cww(e,e)
-1
cww(k,k)
C
Hence, 2
T -1 }i X, (1)
Yy Sw Ly T c_ (i,1)
i=0 “ww

Having calculated(a,gy by some numerical method, their values are

substituted into the likelihood function and the GLR statistic obtained
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as:
Hy

Dk a .
21np(lJ'IHl,6,s) - 21np(y?"|Hy) 2 21na
B

21nA
g

o)

A,k A, A,k _ é,k
= -1n|ce | - ry® 1% 0c® ll +
K 24y o o1
+ ] {tnes,n) + I=0] <z (Iv.23)
i=6 ©

IV.1l.3.5 Determination of PfL_Pd,A and n for the GLR tests in

cases (a) or (d).

The computational complexity and consequent computing time for the
implementation of the GLR method depends largely on the residual sequence
" sample size n.

The equations linking Pf, P A.and n are [44]:

dl

- g
]

. Iv.24
c {p(Ango)dAg (IV.24)

Py(8,v) = { p(Ag|Hl,6,\))dAg (Iv.25)

To calculate Pf, Pgr A.and n, the following procedure may be adopted:
calculate A by fixing Pf and then choose n to give a reasonable tradeoff
between Pd and detection delay time td. However (IV.25) depends on both
6 and v and its evaluation has to be performed for some arbitrary pair,
A sensible choice is to fix 6 and Q at the minimum value that needs to
be detected. ”

The logarithm of the GLR statistic in cases (a) or (d) is given
by (Iv.,19). It is shown in [58], that p(lpAngo) is a X2 density with
one degree of freedom, while p(lnAg[Hl,e,v) is a non-central X2 density

with non-centrality parameter;
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K2
2 =2 ] 2 (1v.26)

m=0 C(m,m)

Therefore, having fixelef, A can be ‘calculated using the values of the x2

distribution with one degree of freedom. These are given in Table 8,

TABLE 8

Percentage points of the x2 distributién (Pf) [51].

£ 0.5 0.25 0.1 0.05 0.025 0.01 0.005

iy |o.455 1.32 2.7 3.84 5.02 6.63 7.88

The calculation of P j depends on the value of the non-centrality
parameter 62 which, as mentioned earlier, depends on 6, v.and n.
Table 9 gives values of Pd for different P and 62.

TABLE 9

Power of the non-~central x2 distribution (Pd) [59]

0.01 | 0.005

5 .146 .284
10 .449 | .638
15 712 .856
20 .88l .952
25 .956 .985

30 .985 .996
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The entries in Table 9 éhow that increasing 52 results in an
improved Pd. It can also be seen from (IV.26) that for fixed © and v
the value of the parameter depends on k=-6. Since’thebterms in the
summation are pdsitive, increasing the sample size increases 62,

Thus Pd increases, but, as discussed in Section IV.l.2.l.l(a), detection
delay time increases and a tradeoff study has to be performed for
specific applications.

IV.1l.3.6 Determination of P A and n for GLR tests in

£-ar

cases (c) oxr (f).

In the case of additional plant or measurement noise the form of
the GLR statistic, given bf (Iv.23), does not permit any analytical
results, sincg neither of p(lnAgIHo), p(lnAg|Hl,6,s) can be obtained
analytically.

The threshold value, A, has to be chosen by experiment. A computer
simulation method for the determihation of Pd’ ﬁf and A in cases where
the pdf of the likelihood function under the hypotheses cannot be written
 in analytical form, is given in [60]. The method makes use of the fact,

that,

(InA [H,) = 1nA p(lnA |H)
P gl 1 g& gl °
Thus Pd may be written equivalently as

Py = Agp(Ango)dAg i A= 1nhg

>iv— 8

{ i

Therefore, the density under H_ actually need be obtained. This can

o]
be estimated from Monte Carlo simulation of the monitored process in

no~-fault conditions. Let such an estimate be:

p(Ag|HO)
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Then the relevant equations involving Pd' Pf and A can be written:

A c A ~ L
P, = :I: p(Ango)dAg (1Iv.27)
A
A 'X -~ A~ -~
P. =1 - A A |H )AA Iv.28
a (f) P gl Hy ang ( )
Equation (IV.28) is &uitable from the standpoint of

utilising numerical simulation results [60].

Iv.1l.3.7 Simplifications of the GLR algorithm.

The implementation of the GLR algorithm involves £he calculation
of Rg at evefy time k. This is quite straightforward in cases (a) or (4),
but becomes complicated in cases (c) or (e), where (IV.20) has to be
maximised, not just evaluated, for every value of ¢ in the sampling
interval., As a result, if the values over which 6 is maximised are
reduced, then the amount of necessary computation will also be less.,

A simplified GLR algorithm will therefore result, if
j <86 < k-m

"where m is an integer whose value may be determined by considering the
tradeoff between Pj; and ty. This scheme will detect faults with a

~delay of at least m time units.:

A further simplification will result if no optimisation over ¢ is
performed, This will mean that 6 is fixed to some‘value, say k-m,
and optimisation is then performed to identify the size of the fault.
The value m should be chosen large enough for the estimation to be

performed accurately.
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If the system and filter have reached steady state, the steady
state values of the mean and correlation of residuals following a fault
can be considered.

The steady state values of the mean in cases (a), (4d) are:

*»

v, néK
15 and {s-l l}v respectively , where s=(1-Kn)¢

while the covariance in steady state following a fault in cases (c¢),

(£), is:

”covlﬁ(iby(j)] = Si,jc + s 3

s (ndk)2 _
cov [y (1),y(3) I= -st™] {13%51——-+n¢Ks l}sy i i#3
. s =1
1n¢ )2
=c = [ - lys, & i3
s =1 b4

A GLR algorithm based on steady state behaviour following a fault,
should work quite satisfactorily, if the time taken to reach steady
state is sufficiently small, The identificatipn properties of the test
will not be affected as far as the fault size is concerned. Thé time
of‘the fault occurrence cannot be identified directly but can.be estimated
from the ‘kngwledge of the time that the system takes to settle after the
fault occurrence.,

The two hypotheses in cases (a), (d) may be written:

2 y(k) = v, (k)

HO
Hi: y(k) = Yo(k) +Byv

where b, denotes the corresponding constant in (III.64) or (III.S81)
i

Since a(m)=bi=constant, c¢(m,m)=¢, (IV.1l6) becomes:
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k

z v (m)
R E

A
'\).—
nbi

Hence the GLR statistic ¢orresponding to (IV.19) is:

k
{1 vm}2n
1nAg= =3 2 1na

ne \FO

Similar simplifications will result in the case of additional noise

in the plant or measurements,

Finally, if the filter has reached steady state, i.e. K(k)=K,
equations (III1.22)~(III.24) and (III.47)~(III.50) describing the
evolution of the various g functions in cases (a), (c¢), (d) and (f)

depend only on (i-j) and will only have to be calculated once.

IV.1.3.8 Implementation of GLR algorithms,

Regardless of whether the GLR algorithm is used in conjunction
with the simpler detection-partial isolation algorithms or not a rule
for termination of the algorithm must be defined.

Since the accuracy in the estimation of a parameter increases with
increasing sample‘size, a reasonable procedure would be to terminate

the GLR algorithm when,

~

A s o
g’

Dy

and =3

Such a choice means that the algorithm will terminate when the
estimated time of fault occurrence coincides with the first residual
in the batch and the GLR statistic exceeds the calculated threshold.

Therefore info;mation about the fault will exist in the maximum number
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of residuals,

If optimisation over 6 is not performed, but a value 6=k-m

assumed, then the GLR algorithm may terminate when,

A > A
g

in which case @=k-m,

In all cases reinitialisation of the GLR parameters is necessary,
following the detection~estimation of a fault. In this way, successive
faults can be detected, provided, as mentioned in Section II.4.l1,
that the faults occur sufficiently apart for the fault monitoring

to reorganise the system.

IV.2 Distinguishapdlity between faults of the same class.

The successful operation of any fault monitoring scheme depends
on its ability to distinguish between faults which have similar effects.
on the observed variable, in particular éon the filter residuals.
Specifically, the following questions must be‘answered:

1. 1Is it possible that the effect of a step bias in the state
is "seen" by the fault monitoring scheme as the effect of a step bias
in the measurements and conversely ?

2, 1Is it possible that the effect of additional plant noise is
"seen" by the fault monitoring scheme as the effect of additional

measurements noise and conversely ?

Consider the effect of a bias. This is given by (III.25) or

(III.46) as,
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k k

Y g, (k,1)v and ) 94(k,1)v
im0 ° % 129 2 Y

in the cases of state and measuyxement bias respectilvely. As shown in

Appendix I.l, equivalent expressions ares’

E nsk"iv - nl Kv@fl;v
1=9 * o 1-s x
andk :
K | | | kR
i=8. ' ‘sml

If the two events are indistinguishable, then there exist V,, 'V, such

that,

It is easy to see that this cannot happen. Consider 6=k, then

-1
AV = =
< n vy. If k=0+1,
2
l-s l=-s
, = +
n l—s-vx {l n¢K s=-1 }Vy
or 1+ = -
’ n( s)vx (1 n¢K)vy

Substituting for Vo gives:

-1
n(l+s)n vy = (l-n¢K)vy

or, 1 + (1=-nK)¢ = 1= n¢K

or, ¢ = O, contradiction.

Additional noise affects the residual covariance. The following

expressions, developed in Appendix I+1l, can be used to infer

N e i
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distinguishabilitys
2 k+m—291és—2(k—e+l)

coviy(k)y(m)] = n"s — Sy

' 1l-s
and . "

k+m=26 m-k
covpy@yym ] = o) % B mE g T o
, s -1

If the effects are indistinguishable there would exist Sy and sy such

that the above expressions are equai for all k, m., Consider k+m=28,then

2 g%- 2 1=
2 X 2 Y
s -1 ‘ s =1

After calculations,

_ex(D¢K L1}
_ oR{ T 1}
X . g Y

I+s

S

Letting K+m=20+1, and substituting for Sx' yields,

2 . heK
-n“s¢K{ %IT +1}

=
1+s

—n¢KS{D§§I + 1}

or,

1+s s ; contradiction

These results show that the proposed schemes are able to distinguish

between similar faults,



-103~-

A A

where ¢, r are calculated using the fact that the variance of the sum

of two‘independent random variables is the sum of their variances,

q+Sx

RH> Q>
[}

=r+s
Y
The operation of updating the state estimate and the state estimate
error variance, can be carried out as follows: equations (III.ll), (III.13)

describe the state and state estimate for the system subject to faults, as:

x. (k)

tr xo(k) + hx(klelAP) ' : (TII.11)

inl(k/k) ﬁo(k/k) + £(k,0,Ap) ; (II1.13)

where the subscripts tr and fil have been used to emphasize that the
corresponding pérameters are the true and the output of the employed
Kalman filter respectively.

It can be seen from (ILL.ll) that the optimal state estimate is,

after taking expectations:

Ef%t; )| ¢57 = % 0e/K) + Bln_ (k0 0| ¥'T

2, (6/K) = £(k,8,00) + Bh (ky,00) [ (IV.3L)

Thus, in the case of bias in the state or measurements the optimal

state estimate will be, after substitution:

. k'—il v
{e_ iy + ¢ v}

n
X, (k/k)

N
c gfil(k/k) -

or

l_l.
e~/ I~1x®
@

2 N . k-4
Xeyy (KD - e{.fd.(g,l)vy+ )

-

respectively, where fa and £_ are given by (II1I.23) and (III.48). 1In

d
both cases the correction involves nonrandom quantities whose values can

be found exactly. This fact does not neccessitate an update in the error

vartance, This procedure is also intuitively correct, since the value of
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CHAPTER V: SIMULATION RESULTS

V.l Comgpter‘based'simulation.

The proposed methods for fault monitoring were tested by Monte

‘Carlo simulation runs. The simulated system is:

x(k+l) = 0.7 x(k) + w(k)

y(k) =%(k) + v(k)

with E[w(k)]=0, E[v(k)]=0, all k, x(0)=0, and,

E[w? (k) ]=0.3, E[vZ(k)]=0.3, p(0)=0.5

The steady state Kalman filter parameters‘for this system, labelled
TS4 in the tes£ runs, are: K=0,562, ¢=0.68, p=0.17. Table 13 is a computer

k
output of the matrices Cg' 2’k

and c2r* gefined by (II1.17), (IT1.91)
‘fespectively, whiie Table 14 shows the residﬁal bias séquence given by
(I1I1.63), (III.86) in the cases . of staﬁe.and measurement bias respectively.
To facilitate the possibility of introducing a change in ¢ of a
larger magnitude without causing iﬁstabilities'tests Qere aléo carried out

with ¢=0.3. This system is referred to as TS3.

All computer programs were written in Fortran and structured in such
a way so that maximum‘usage of data f}leS'created by'indiVidualaprdgrmmé»
was made. In this way computation time and storage_requirements were
reduced. Results were plotted on a visual display unit and subsequently
hardcopied. Numerical Algorithm Group routines were used for the
numerical maximisation of the likelihood function and for the generation
of pseudo~random numbers. These two routines are described in Appendix

I1.2. Aall computer runs were carried out on CDC=~6400 Time~-sharing

computer system,
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'V.2 -Degeription of tests,

The testsvwere di&ided'into two pa;£s. In the first, the validity
and performance of the simple detection~partial lsolatlon tests -Were
examined, while in the second part the perfoxrmance of the GLR tests
was investlgated,

The maianalman-filter program was directed to operate on a sequencé
of one hundred nbisy measurements and therefore.generated one hundred
filter residuals, A fault of any Kind and size could be applied to the
system at any time and the corresponding residual sequence stored ta a
file for subsequent analyais by the fault'monitoring program,

In the first part, tests were carried out for'every fault condition,
In the second part, testas were restricted to types (a), (¢), (d), (£) in

view of the increase in problem and programming complexity.

V.2.l"Testsfﬁox*detectionﬁpartial*isol&tion"algoritth.4

Plotted results for these tests are shown in £igs; 12Q20;
Every filgure is a collection of four graphs with a common heading
describing the state of the simulated system and the number, n, of
residuals in the batch, The four graphs show:

1, Top LHS: variation of residuals:

2, Top RHS; variation of number of positive residuals as

used in the sign test for the mean;

3, Bottom LHS: wvariatlon of residual variance;'

'4; Bottom RHS: vaxlation of first order serial correlation;
The residual sequence is plotted against timeHStep:k,'wﬁile the values

of the statistice are calculated at each time step k, using a batch of
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n residuals. Therefore the first plotted value does not appear until
k=n+m. The delay m is the time taken for the filter variance to settle.
Within .0001, simulations show that for TS4, m=4,

If the values of the UCL and LCL lines are within the plot boundaries,
they are plotted together with their values. The length of the axes and
the coordiﬁate values shown are chosen automatically by the plotting
routine.

Three tests involving a change in the state transition coefficient
were performed. A fault which did not destabilise the system as well as
a destabilising one were int:oduced in TS4, while TS3 was used to.test
the effects of a change of size 0.6.

The performance of the tests under different fault conditions is
summarised in Table 10, If the calculated statistics confirmed their
predicted.behaviour a '"Yes' entry is indicated, otherwise a 'No' appears,
In the case of a bias, for example, the number of positive residuals
should exceed its limits while the variance and first order serial
correlation éhould remain within their bounds. This would indicate
that the residuals have nonzero mean but are independent a condition
which can only arise if a bias exists in either the state or the
measurements., If, on the other hand, additional noise is simulated,
the reverse should happen, indicating that the residuals have nonzero
mean but are correlated, a condition that arises if additional noise
exists.

The entry in first parenthesis for (b) denotes results obtained
using TS4 with destabilising fault,.while the second parenthesis denotes

results obtained with TS3.

Table 1l shows the detection delay time, td' given as the number

of time steps, for each kind of fault (where inapplicable a -~ is shown).
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TABLE 10
sign test variance ry
No fault yes Yes yes
a. State bias yes ves no
b. change in 4. yes (yes) (no) | no(yes) (no) | no(yes) (yes)
¢, additional plant
noise yes yes yes
d. measurement bias yes yés yes
e, change in n. yes yes no
f. additional
measurement noise | yes yes no
TABLE 11
sign test vériance r,
a. 5 - -
b. =(=) (16) | =(=) (26) | 38(9) (9)
C. - 10 9
d. 22 - -
e. - 10 -
£, - 23 -
TABLE 12
UCL LCL £ —
sign test 19 11 o.1
22 8 0.0l
sample variance 1.03 0.43 0.05
1,16 0.33 0.0l
fifst order serial | 0,27 ~0.33 0.1
correlation
0. 327 -0,387 | 0.05
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The residual sequence length was chosen so that the probability
of false alarms, Pf, was low. Since in a real application, faults
will occur infrequently it is important to keep the probability of
false alarms low, though there may be si?gations where a high false
alarm raté could be tolerated in return for high probability of detection.
The quantities UCL, LCL.and Pf, for n=30, for the various tests are
given in Table 12, These are calculated using the methods and Tables
of Sections IV.1l.2.1l.1 and IV.1l.2.1.2.
The value of P_. depends on the actual value of the statistic used.

s

Tables 5 and 6 can be used to find Pd for the sign test. In the case

of the variance test, Pd can be calculated using the steady state
values of the variance of the residuals as follows:

(c). Additional plant noise: the true variance is given by

(I11.78) for i=j.as,

0-1= n2 sx+c= 1 2 2+O.682=l.787
l-s 1~ (1-0.568) 0.7

The variable Az used in (IV.1l0) is therefore:

2 1.787

AT E et =
0.682 2.62
X2
29,0.025 _
and ———2—.-6-2"——— 6.12
X2
29,0.975
—_—t o == 17.4
2.62 >
o _ 2 ; 2
Hence, .. Pd = P[X29<6.12] + p[x29>17.45]= 0.95

This value of Pd is not very high because Az, which indicates the

relative increase in variance, is quite low. As can be seen from

0

fig. 10, high values of P, can be obtained for A2>4.

4
(f) . Additional measurement noise: the true variance is given by

(I11.89) as:
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2

2 :
0% = o'+ {l_M} s = 1,852
1 2 Y
s“-1
2
Hence AT = 2,715 and
2 x2
X29,0,025 29,0.975 ~
2015 >0t Tais <168

and Pd is calculated from (IV,10) =0,961. -

Fig. él shows a pair of tests for the mean using the sample mean
statistic and a preliminary pair of tests for correlation using the
rank correlation coefficient.

As it can be seen from the bottom pair of graphs the rank test
of independence did not perform at ail well in two tested cases of
additional plant and measurement noise.and was thus eliminated from the
possible tests of independence. The reason for the failure is not clear,

The top pair of graphs verifies the results of Section IV.1l.2.1.1.
The top LHS graph shows a reduction of the sample mean variance, while
the top RHS shows an increase in the sample mean variance,

Using (III.78) the correlation between 7Y(j) and Y(i) is calculated

as,
(0.3024) 73
0.9

cov [y(1),v(3Y

in the case of additional'plant noise, while in the case of additional

measurement noise (III.88) yields,
cov [y(1),y(3) ] = -0.2276 (0.3024) ™

These results predict that the additional factor required to adjust
the limits of the sample mean, as given by (IV.6),will be positive in
the case of additional plant noise, hence an increase in the limits is

reguired, while it will be negative in the case of additional measurementnoise
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hence a decrease in the limits is required. This is clearly shown in

fig. 21.

V.2.1.1 Conclusions for detection-partial isolation algorithms.

The summarised results of Table 10, together with the inapplicability
of the mean and rénk correlation tests suggest the procedurexshown in
fig. 22. This procedﬁre could correctly detect every fault in the
simulated systeﬁ and Qould not give any false alarms.

By comparison, the variance test seems to be much better than the
first order serial correlation test, with only one missed detection,
that in thé case of féults "in ¢, of sizes0.2, 0.6, This might be due
to the small fault size, which would produce small Az and consequently
small Pd' With this in mind, the variance test could be used if faults
that produce appreciable effects On}y need be detected.

The detection delay times, shéwn in Table 11 can be improved in
certain cases if the sample size is reauced. However, this will increase
the probability, Pf, of false alarms and a final choice must be made

with the requirements of a particular application in mind,

V.2.2 GLR tests.

The GLR tests are shown in figs., 23~29 in groups of 3. The top
graph shows the variation pf the GLR statistic Kg' the middle graph
the MLE of the size of the fault and the bottom graph shows the MLE
of the time of fault occurrence. All parameters are plotted against
time step k. The éraph heading shows the state of the sfstem, the
length of the residual string, n.and the number m of the optimisation
window for ® as described in Section IV.1l.3.7. "Simple" GLR refers

to the case where the null hypothesis is hypothesis of no fault. This
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fig.22 Detection-partial isolation procedure
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would be the case if the GLR algorithm is used on its own.
The algorithm, and plotting, stops when a fault has been detected

and completely identi fied, .i.e. when

.~

Mg >A  ana
6= 3
Various simul;tion runs were pérformed with faults applied to the
means and Variances of the noise sequences. 1In all cases the faults
were correctly detected, isolated and estimated.
Figs, 23-25 show the effect of increasing the sample size and
window length, m, on the time and size estimates. It may be seen
that increasing the sample size results in substantially better estimates
of size, while time estimates are relatively unaffected.
Tables 8 and 9 can be used to calculate Pf and P_ relative' - to

d

A and n. Hence if A=8, Pf=0.005. To calculate Pd,fin the case of

bias in the state\pr measurements, the non-tentrality parameter 62,

appearing in (IV.26) must be calculated:

62 2 % a2(m)
=V z ¢ (m,m)
X n=o ’
m
where a(m) = z ga(m,i). In the case of a step bias, it is shown in
i=6 '

wmmnIJM)mu,%mhmms#kmw.Hmw,

m-9 | . m-9+1

m) = z sl - »l—s

a n . n l-s

i=0
and if c¢(m,m)=c,
k m- +11
- 2
§2 = L ) {nl > }ve > 30 if k-e=18
c X
m=6 1l-s

Hence, from table 9, fd>0q996.
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Pigures 26-27 show correSponding tests in the case of step bias
in the measurements. A larger fault size was needed in this case, since
the increase in the value of the residual mean is felatively lower by

a factor of 3 in this case than in the case of state bias. This can be
seen by evaluating the steady state &alue of the mean in the two cases
using equations (III.64) and (III.81). For TS4 the values are 1.44 and
0.43 for the state and measurement bias respectively.

Table 15>shows results for a “mﬁltiple" GLR test. AThé“resuitérare in
tabulated rather than plotted form because the differences are small and
would not be obvious in a graph., The simulated system is subject to a>
state stép’bias with the shown parameters, The LHS part of the table
shows the GLR algorithm results obtained using the correct GLR detector
for this case, i.e. the state bias detector. The RHS of the table shows
results for the same system and using the same n, m, but employing a GLR
detector designed to monitor measurément bias. ' The results show that the
GLR values obtained ﬁsing the correct detector are consistently higher
than the ones obtained via the incorrect detector. This implies that a
procedure based on choosing the fault with the highest GLR value, would
consistently make correct identification of the occurred fault in cases
where more than one kind of fault is 1likely to occur, though. not

simultaneously; . ,

Figs. 28, 29 show simulation runs of the system with additional
state and measurement noise respectively. The feature of these tests_
is the large sample size needed for the accurate estimation of the
fault size. Preliminary tests with smaller sample sizes prqduced
unacceptable results. The maximisation of the fault size was constrained
from O to 10.

With the chosen sample size, the fault size and time of fault

occurrence were correctly identified.
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Table 16 shows results for a multiple GLR test in the case of
additional noise in thé measurements. The outcome is fhe same as the
one described for the multiple GLR test in the case of a bias. The
pair of these tests imply that if the GLR-procedure is used in conjunction
with the simple detection-partial isolatfan statistical techniques,
described by the flowchart of fig. 22, the resulting monitoring scheme
would correctly detect and identify faults (a), (¢), (d4) and (f), any of

which: is likely to.occur at any time in a dynamical system described by

(Iol)-(I.Z) .

V.2.2.1 Conclusions for the GLR tests.

The validity of the GLR algorithh was succesfully tested in the
cases of "simple" and "multiple" hypotheses.

Thus, in cases where the monitoring of only one kind of fault is

(required,’the results would indicate that GLR procedures work well
and have smaller idetection'delay times than simple detection-partial
isolation algorithms based on sample statistics. Correct identification
of the size and time of fault requires a longer delay. Thus in
applications where a rapid detection of faults is required, GLR tests
should be preferred.

The GLR detectors perform equally well in cases of where more
than one type of fault is likély to occur. 1In such. cases, if used in
conjunction with the simpler tests, the resulting fault monitoring
process will accurately detect and estimate any faults in the form of
bias in the state or measurements or in the form of additional plant

or measurement noise.
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CHAPTER VI: GENERAL CONCLUSTONS

In this thesis, fault monitoring schemes for discrete, linear
stochastic systems subject to faults in their parameters are discussed.
The proposed schemes consisf of a state estimation Kalman filter based
on a no~fault hypothesis and a fault monitoring system based on simple
statistical tests and GLR hypothesis testing detectors. Once a fault
is detected, the filter can be ddjusted using the information of the
fault monitoring scheme. The analysis and simulation tests were carrxied
out bn first order systems, though_multivariable and time-varying sy&tems
can be similarly tfeated, at least as far as the analysis is concerned. -

An overall system, incorporating fault monitoring schemes, can be
extremely complex and a final choice depends heavily on the particular
application. Such issues as available computational facilities and cost
of implementation enter in a crucial way into the design decision. For
this reason the proposed‘fault monitoring schemes range from the simple

to the complex, thus being suited for most real applications.

The te§t results obtained for the proposed detection partial—isolation
algorithms show that it is possible to detect and partially isolate
the nature of the occurred fault with a set of simple detection algorithms
based on statistical inference. vFurthermore, if the class of the faults
is suitably reduced, complete fault isolation is possible.

The performance of the statistical tests employed, confirm their
theoretical behaviour. The simple nature of the < statisties involved
and their known probability distributions under the null hypothesis,

permit a detailed analysis of the performance of each test for chosen
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sample size and probabilities of false alarm and correct detection.
Conversely, given a set of adequate performancé\criteria, such as
specified probability of false alarm, the remaining parameters can be
optimally selected, The tests were éharacterised by signifibant :
detection delay times, but as discussed in Section V.2.l.1l, this was
due'to the large sample size used. This implies that, in practice a
tradeoff study between detecéion delay time and probability of false

alarms has to be carried out.

The implementation and characteristics for the GLR tests are
different in the cases of faults in the mean and variance parameters
of the noise sequences.

In the case of bias in the plant or measurements, the implementation
of the GLR algorithm is quite straightforward, dQue mainly to the fact
that the maximisation of the likelihood function under the alternative
hypothesis of fault may be obtained analytically., Further the MLE of
the fault size is explicitly related to the MLE of the time of fault
occurrence. The probability dist;ibutions of the GLR statistics under
both the null and alternative hypotheses are well known distributions,

a fact which again}permits a detailed analysis of the performance
characteristics of the GLR test. Thus, the functional relationship
between the probability of false alarm, the probability of correct
detection, the tﬁreshold value and the sample size can be used for the
determination of optimal strategies according to prespecified performance
criteria., The simulation results obtained in the case of additional
plant or measurement noise confirm . the'theoreticalvpredictions. These
results indicate the potential usefulness of the method, as high correct
detection rates and small false alérm rates were obtained, even though

the size of the simulated faults was well below the 100 levels used by
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other researchers in the field [36]. The GLR test performed well in the
case where it had to distinguish between two types of faults, making

consistently correct decisions.

The analfsis and tesf résults in the cases of additional noise
or furthermore in the case of a change in the parameters ¢ or m, show
that the problems of detection, i1solation and identification present a
coﬁsiderable challenge from the stahdpoints of theory and practical
implementation . Thebproblems arise mainly from the form of the
likelihood function which has to be maximised by numerical techniques.
The strong nonlinear dependence of the likelihood egquation on the fault
size requires an initial guess of the region containing the maximtim
or discretization of the interval in whicﬂ the fault size is constréined.
Thus the problems which arise for scalar systems may pe overcome . ‘
but the extension to multivariate systems will not be so straightforward.
Nevertheless, in applications where monitoring for additional noise is
essential the proposed scheme may serve in a number of ways. Firstly,
the values of the likelihood function at different points in the parameter
space may be used to make relative statements about the likelihood of one
parameter wvalue versus another, Secondly, the pefformance of the filter
in the event of faults can be analysed using the equations developed,
and the overall system designed so that the effects from possible faults
minimised. Thirdly, atteﬁpts to approximate the likelihood function
surface by some quadratic surfdce may be ﬁade in specific cases and where
conditions of the problem permit. Finally, storage and computing
. requirements may be reduced by using GLR tests in conjunction with simpler
statistical tests, evén though overall performance may suffer. In this
manner, a bank of tests may be implemented that range from the wvery simple

to the very complex,.
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The simulation results in the cases of additional state and
measurement noise were satisfactory, with correct identification of the
the time of fault occurrence and acceptable estimates of the fault size.
In this case the range of the fault size was constrained and the
maximisatioﬁ of the likelihood function was performed under this
constraint. Good estimates of the fault size, however, were obtained
using large sample sizes resulting in increased computing time.
Threshold values and sample sizes must be set experimentally using
simulation techniques, since the probability distribution of the GLR

statistic under both hypotheses on test are not known.

Since no similar techniques are known to the author to exist, no
direct comparison is possible., In general, however, residual-based
fault monitoring schemes offer seﬁeral advantages over other methods:
they can be adspted to utilize the residuals of an existing filter in
a number of different ways, offering various tradeoffs between performance
and complexity; no performance degradation is suffered-prior to the

occurrence of a fault, unlike other methods which use suboptimal filters.

Further topics for research

The develpment of fault monitoring schemes is still new and the
recommendations for further study numerous., Since the field is also
closely related to statistics, the suggestions contain interesting
problems for statistical research.

Firstly, the practical implementatidn of the proposed monitoring
schemes to multivariable, time-varying systems can be investigated
along the lines of the present work. As mentioned eaflier, the
extension in the case of state or measurement bias is simple, but

difficulties exist in implementing schemes for additional noise or
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changes in the transition~matrices ® and H.;.The problem. of monitoring
for multiple faults or distinguishing between more than two possible types
of faults provide ground for statistical analysis, as indeed the |
distributions.of the GLR statistics under’the hypotheses on test.
Different classes of faults, other than additive, or alternative
modelling should also be researched. |
| The class of linear systems with gaussian, uncorrelated disturbances
cover only a small section of real systems and research on fault monitoring
for various‘variations of the process model must be carried out. The
extenision to non-linear stochastic systems should also be considered.
These’and other issues, notably the application of the proposed

methods to real systems, await future investigation.
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APPENDIX I.1l
Theorem; The state, measurement, filter estimate and residual
sequences for systems represented by (I.l)-(I.2) which are subject to
possible additive type faults in the values of their parameters, may

be written as:

x(k) =h_(k,6,4p) + x, (k) (III.11)
y(k) = hy(k,e,AP) + Y4 (k) (II1I.12)
(k/k) = £(k,0,AP) + X (k/k) (II1.13)
y(k) = g(k,8,Ap) + Yo (k) _ (III.15)

Proof: The proof will be by induction.‘ Suppose (III.1ll)-(III.15)
hold for time k. At k+1, xX(k+1/k+1), v (k+1l). are calculated by the Kalman

filter as,

y(k+1) = y(k+1) - n¢x(k/k)

ToUetl) + b (k¥1,8,80) = nélxg (k/k) +£(k,0,4p) )

Yok+1) + h_(k+l,6,4p) - nof(k, 6, 4p) (A.1)

and, ¥(k+1/k+1)

$X (k/K) + K(k+1)y (k+1)

01X (k/K) +£ (k,0,AP) } + K(k+1) {yo (k+1) +h_(k+1,6,4P) -

r|¢f(kr 8, 4D) }

Ry (k+1/k+1) + ¢£(k,0,AP) +

+ KOt (h (k+1,9,4P) =g £ (k10 /AP) } (R.2)

where the subscript O denotes the value of the parameter that is obtained

if no fault ocuurs. Equations (A.l), (A.2) may be rewritten,
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y(k+l) = yo(k+1) + g{k+1,0,Ap)
X (k+1,k+1) = X0 (k+1/k+1) + £(k+1,0,4p)
where,
g(k+l,0,Ap) = hy(k+l,6,Ap) - no£(k,04AD)
f(k+1,0,Ap) = ¢£(k,0,Ap) + K(k+l)g(k+l,0,Ap)

At k=0, since the fault has not affected x(6~1/6-1)

Y(8) = y(8) - néx(8-1/6-1)
= (0,0,Ap) - nex(6-1/6-1)
Yo(8) + hy 8,0,Ap nex /
= h T 'A )
Yo(e) + y(e 8,AD
and x(6/8) = 0% (6-1/6-1) + K(6) Y (6)

%,(8/6) + K(6)h (8,0,4p)

Hence,
y(8) = Yo(e) + g(9,0,Ap) C
#(0/0) = x(6/8) + £(8,8,4p)
where,
9(8,8,4p) = h (6,0,4p)
£(6,0,4p) = Kﬁe)g(e,e,Ap)

This completes the proof.



-144-

I.1(a): Mean value of residuals in steady state following a

step bias in the state.

The mean value of the residuals in the event of a step bias in the

state is given by (III.63) as:

Y(k) =
1

I o~

ega(k,i)vx

where the g, are given.by (I11.22)-(I1II.24) asi

g, (1,3) = n{¢77I-p2, (1-1,)} (111.22)
fa(i,j) = K(i)ga(i,J)v+ ¢fa(i-1,3); i3j (II1.23)
g (i,3) = £ (1,3) = 0; i<j (III.24)
a a

Substituting for ga(i,j) in (IIT.23):

i-j . . .
£ (1,3) = K(Dn{e “=9f_(i=1,9)} + ¢£_(3-1,3)

(1—K(i)n)¢fa(i-1,j) + K(i)ncbi_j

Assuming that the filter has reached steady state, i.e. K(i)=K, i36

(I11.22)~(III.24) depend on (i-j) only. Hence,

| fa(i—j) = sfa(i—l-j) + si_j . (a.3)
where, s = (1~Kn) ¢ (A.4)
s, . =Kn¢' 3 (A.5)

i-j

In view of assumptions of uniform complete controllability and

uniform complete observability and Theorem 1,

k _

lim s™ = 0 | (B.6)

K0
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and since the system is stable, |¢|<l, and,

lim si_, =0 (A.7)
(1-9) e ~77

Equation (A.3) is a difference equaf&on in fa' similar to (I.l),

with initial conditions, obtained from (III.23) for i=j,
£ = K
a(O) n

Its solution is [47]:

m \ m-l m-i-1
£ (m) = s"£_(0) + izo.s 5341
_ mf ) + m—lmgl -i
- % % LS S
1 m=1 ..
= s"kn + ™ “kn¢ z s ot
i=
Hence, .
m sm—¢m
fa(m) = Kn{s" + ¢ m=ry }
= g™(kn-1) + % ' (A.8)
and,
g, m = n{¢m-¢{sm_l(Kn-l)+¢m-l}}
=ns® : (A.9)
o
- z ga(m) = E%; (a.10)
m=
and,
Yk =Dy ; k> (A.11)
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I.1(b): Steady state value of gb in the event of a change in ¢.

Equations (III.34)-(III.36) describe the recursive relations for

gb in the case of a step change in the state transition coefficient ¢.

It may be seen that these are the same as (III.22)-(III.24) except only

for the form of the hx functions, &hich is ¢i-3 for the case of a step

bias and (¢+A¢)>") for the case of a step change in ¢. Therefore, the

analysis of the previous Section can be carried over in this case, having

made the appropriate changes. Thus, equation (A.3) becomes:

fb(i—j;A¢) sfb(i—j,A¢) + Si-j

Kn(¢+A¢)i-j

where, Si—j

Kng+"d-

Since it is assumed that |g|<1,
lims, . =0

(1= *71

and equation (A.8) becomes:

m <
£, (m,8¢) = Kn{s" + § ==L 3
s~¢
. ’ m-1 -m-1
.. g, (m,A¢) = {3 - nxe{s™ L + § =8 i
; s—¢

UL e Y P

s=¢ s=-¢

Thus, since both |¢|<1 and |s|<1,

lim gb(m,A¢) =0
. o

(A.12)

(A.13)

(A.14)

(A.15)
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I.1(c): Correlation of residuals in steady state under

additional plant noise.

The correlation of residuals in the event of additional plant
noise is given by (III.77) as,

covly(k),y(m)] = c(k,m) + %g (k,i)g (m,i)s
i=6 (s} (o] X

where c(k,m) is defined by (II.2), A=min{k,m} and the g, are defined
by (III.39)-(III.4l) which are the same as (III.22)-(III.24). Hence,
usiﬂé (A.9) and letting A=k: |

k

_Eegc (esi)g (m,) =
1= 1

I
Il o~~~

egc(k—i)gc(m—i)

m-i

K k-1
} ns’ ns
i=06

2 k+m § =21
ns z S

i=8

-2 (k-6+1)

2 k+m-2 -
nés e{l = —

} . (A.16)
1-s

Since equation (A,16) does not depend on (k-m) only, it follows
that the residual sequence is not stationary in the event of additional

plant noise. However, for k+m>>28,

k 2 k~-m~2
z gc(k-i)g (m-i) = - -LL_T—
i=9 ¢ 1-s
- 2
, = "7 =} _ (A.17)
1-s
Hence,
-k 2 \
cov[Y(kby(m)] = ¢(k,m) + gk 1 2 S i k+m>>28 (A.18)

1-s
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1.1(4): Mean value of residuals in steady state following a
step bias in fhe.observations.
The mean value of the residual sequence in the event of a step bias
in the observations is given by (III.80) as:
_ k
yk) = § g, (k,i)v
. d Y
i=g¢

where the gd are defined by (III.42)-(III.45) as:

gd(i,j) = —n¢fd(i—l,j); i>j ' (III.42)
£,(143) = K(1)g (4,3) + O£ ,(1-1,9) 5 133 (III.43)
gd(i.i) =1 (III.44)
gd(i.j) = fd(i.j) =0; i<) (III.45)

If K(i) has reached a constant value, K, (III,.42)-(III.45) can be written

in stationary form as:

ggalm = -n¢fd(m—l); m>0 | (A.19)
wfd(m)'= Kgd(m) + ¢fd(m—l); m30 (A.20)
94(0) =1 | . (a.21)
gd(m) = fd(m) =.0; m<O (n.22)

Substituting (A.19) in (A.20),

1

£,(m) = -Kngf (m-1) + ¢£4(m-1)
= (l—Kn)q;fd(m—l)
= sfd(m—l)
= smfd(O) = g% (A.23)

-1
and gd(m) = -n¢Sm K , hence,
k k k-1 Keiol.
oL gakid) = ] gglk-i) = ] {-n¢s Ko+ 1

i=6 i=6 i=6



| k-8-1 1-g°7¥
= 1 = n¢Ks -
-1
l-s
k-6
=1 + n¢Ks_l 1 s_l
l-s
and for k>>6, =1+ £i§ \x (A.24)
Hence,
v = n¢x -
Y(k) = {1 + s_l} Vy i k>>8 (A.25)
I.1l(e): Correlation of residuals in steady state under

additional measurement noise.

The correlation of the Kalman filter residuals in the event of
additional measurement noise is given by (III.87) as:
A
cov[Y(k),Y(m)] ‘= c(k,m) + ) g_(k,i)g_(m,i)s
o TF £ y
i=8
where M=min{k,m}, and ge is defined similarly to 94 by (III.42)-(III.45).

Hence, letting i=k#m:

k k
T agtkio mi) = ] g l-b)g (m-i)
i=® i=9
k-1 - :
= T noxs Y (ngrs™ T 4 g 009 k)
128 £
1
k-1
2 k+m- -
= (n¢K) s tm=2 z s 21 + g(m=-k)
i=0
o _~2(k-0) e
- (n¢K)2 skfm ZS 29 E_E_______ _ n¢Ksm k-1
-2
l-s
m=-k-1 Ks_l
and if k+m>>29, = -n¢Ks {39-:5- +1}
l-s
n-k [ (n¢K) 2 -1
= -s {[=—— + n¢ks "}

s -1
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Hence,
2
. Jo=k [ (n¢K) -1 _ - .
covly (k) (m] = s {?:—l——”f noKs T} ey kem, kim>>26
 (R.26)
#
When k=m,
k k ‘
_ -i-1 2
) gi(k,i) = T (nexs"H2 4GP0
i=6" i=86
1) w28 1um (k=)
= (noi 262 (K1) ~28 1ns RS
1 s 2
~{n K) 2
If k>>0, =1 - 731——
: s -1l
Hence,
‘ R 2y '
var[y (k)J= {1 - --‘L—z s, +ctm (A.27)

s -1
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I.2: Results for the multivariable case.

The multivariable equivalent of the system described by (I.1l)-(I.2)
is given by (III.95)-(III.9). The state estimate and residual vector
sequences for this system aré calculated via the multidimensional Kalman

filter by:

y(k) = y(k) - HK) x(k/k-1)
= y(k) - H(K)(k k-1)x (k=1/k-1) (.28)
x(k/k) = X(k/k-1) + K(K)y (k) (2.29)

Following the lines of proof for the theorem of Appendix I.l, it may be
shown that in the multivariable case the following equivalent theorem
holds:

Theorem: The state, measurement, filter estimate and residual
vector sequences for the multivariable system described by (III.95)-(III.96),
which are subject to additive type faults in the values of their parameters

may be written as:

x(k) = h (k,0,0p) + x (k) (A. 30)
yO) = h Oc,8,8p) + y (k) (A.31)
x(k/k) = £(k,0,40p) + X (k/k) (A.32)
1K) = glk,6,0p) + y (k) (A.33)

where the vector functions Ex’ Ey represent the effect of the fault on
the state and measurement sequences respectively and £, g are computed

from the following recursive wvector equations:
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g_(k,e,AE) = Ey(k,e,AE)"’ H(k)@(k,k"‘l)i(k\"‘l,e,AR) (Aq 34)
- £(k,0,AR) = K(k)g(k,0,8p) + &(kk~1)£(k~1,0,AR) "} ky6 (A.35)
~gk,0,8p) = £(k,0,0p) = 07 k<b _ (R, 36)

Hence, in the case of additional measurement noilse, the effect
on the residual sequence can be similarly found, as in ﬁhe'case Of'écalar
systems, by considering the effect of successive, SorreSPénding tYPé I
faults,
Therefore, (III.56) becomes:
k

Y(K) =y (k) + )

G(k,i)EY(i) (R.37)
i

8

where the matrices G(k,i) are recursively computed from:

~H(1) ®(i,i~-1)F(i-1,3); i>j (A.38)

G(i,]J) =

F(i,j) = K(1)G(i,3) + &(i,i-L)F(i-1,3); i3] (A.39)
G(i,i) =1I (A.4b)
F(i,3) = G(i,3) = 0; i<j (A.41)

Substituting (A.38) in (A.39),

F(i,3) =-K(i)H(i)®(i,i-1)F(i-1,3) + &(i;i-1)F(i~-1,])
= (I-K(i)H(i))®(i,i-1)F(i-1,3)
i
= TT (I-kKmHm)e(m,m~1) F(3,3)

m=j+1

i
= l (I-K(m)H(m) ¢ (m,m=1) K(J) (A.42)
m=j+1

where the matrix product is defined by:

n
= e e e H >k
I |Si Sn Sn-l Sk P nz
m=k .

0; n<k
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Hence,
_ i-1
G(i,3) = -H(D)&(i,i-1) T T (I-K(mH(m)) & (m-m-1)K(j) (A.43)
m=J3+1

To calculate the correlation between residuals x}k) and y(m) ,the sum

A
L(k,m,8) = Y G(k,i)S(i)G" (m,i)
i=6

must be calculated. 1Let,
i-1

TT (z-xm)HEMm)s(m,m-1)K(3)
m=j+1

r{i,3)

then, G(i,3) “H(1)®(i,i-1)T(i,3).

Let . k=>\,
K
Z(k,m,0) = ) H(k)®(k,k=1)T(k,i)8(1)TT(m,i)?" (m,m-1)H" (m)
i=9
| X . .
= HK)o(k,k-1) { } 0(k,1)S(1)¢ m,1)}eT (m,m-1)H" (m)
i=9 |

If the system is uniformly completely observable and uniformly

completely controllable,

k
|| } (I-K(m)H(m))®(m,m-1)|| + O, exponentially as k-,
m=Q L

Therefore G(i,j) described by (A.43), will tend to zero, and consequently

Z(k,m,06) will tend to a constant matrix.

If a time invariant system is considered and the filter is in steady

state, ' J

G(i,3) = -mo{ (1-xm) o}k

K | y
o ¥ {(z-xm) o} TrskT{{ (1-xm e}™ 1 }o HT
i=0

and Z(k,m,0)

n
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Consider the sum,

k k
- -1 k-1 -i -
I wlewh ™ = (] W ewD™ ™ @H"F = s
i=6 i=0 ‘ !
where, W= (I-KH)@
T = KSK'I|
Expanding,the sum yields:
T+ WD + L. Wl EO
k=6-=1 T k-6~1
=T+ WT+ o0 + W T(W ) YW
If k>>6,
T
= W .
Se,0 = T+ WS, (A.44)
This is a linear equation in the elements of S which can be

00'6

solved from a set of simultaneous linear equations. Therefore, in steady

state under additional measurement noise:

L(k,m,0) = HOS_ e(wT)m'k : (A.45)
r
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I,3: Iterative calculation of serial correlation,

The serial correlation of lag m is defined by:

v @) =¥ I3y Gemy -y 3y

J
1
k‘::ml.

=N

J =
m

‘where the superscript j denotes that the st@tistic is calculated from the

sample X}’J and m1=j-n+m+1. The iteration on m will be considered first.
3 j . et A
] 1l & A ai
S fy 0 v I iy teeme 1 -y 1)
m-1
k=ml-l
j ~d ] A s .
b 2i,5.2
=i Yy @y &em1) =y (y (kemt 1) 4y (k) = (v ¢}
k=ml-l S ;
Similarly,
L 1 ‘ ~ .
N 1 aj ‘ Al 9
1ol vy aem -yt oy em v o) - E %
m n .
k=ml
Comparing terms,
21,3 ) ; 2i,3 3 8i,3
Y Yoy =« Yoy -y’ y(ml)
k=m_+1 :
= qr?l «?llj
8,5 3 4,9 1 a1,9
v ) lY(k‘m) = Yooy(k=m) -y "y (k-m+l)
= + =
k m, k"ml
2i,9
= pi Yt
v 8,32 5 A2 AL,2 - Apj 2
k=m +L’ k=m, S -

1 L
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Therefore, Ci can be calculated from ci_l using:
. ‘ a . J
e R =1,3,2 J,. 3,24,3
o = ={-m (v ' = (CH)Y T+ Y y®yk-m)}
m wzn,{ " Py k=m. +1
) 1
where,
j_ 3
qm qﬁ-l Y (j=n+m)
i _ 3 '
Py = Po_q — Y(J-n+l)
initialised by:
3 o
a5, = pg = 7 v =y ?
k=ml

It remains to establish a recursion of cg‘from cg_ .

The sample mean can be calculated iteratively, using

3o yiieamhy %iY(j)-Y(i-l)}
Then,
A j r-y 2
cg = Z{Y(k)-yi'j}
k=1

A j . A .

J=1 2i-l,3-1.2
c = {yx)- v }

° k=§—l

Comparing terms,

~3_ ~3=1 1. 2 2 . 5 $Y e (121) 2o
cg=cy *+ ;{Y (= vy@E-1} = {y(F)=y(i-1)}
. 8- -
- 2Yi 13 l{Y(j)-Y(i-l)}
. ,j'\ l . ";
Let, a” = S{y(3)=y(i-1}} then
A a4-i 1 2 2§-1,3-1
= @™ 2P i - @y
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I.4: Maximisation of the likelihood equation

i

The likelihood equation is given by (iV.20) as:

-1
£(6,s) =-2lnm(3,0-1) + ln|C| + x?c Y

where C=E+ sc”

The funqtion £(6,s) is highly nonlinear in s, the degree of
non=linearity depending on the dimension of C. It will in general have
multiple minima, Its maximisation, even in simple cases, is not possible

analytically. Consider, for example a problem in two dimensions for

fixed 6.
C = el + s cll 12 = scll+el 5012
+
s €12 °11 SC1o 8Cy27%)
. . 2 2
= + + -
. .lcl (sc,,+e)) (sc,, e2) s7c)
- as’ 4 +
\ = a, a;s + ag
where,
2
a = C (o] -
2 1122 ~ 12
= +
%1% 1% T %%
a =
o ©1%2
-1 -1
a = +
and, c s€177%  SS1o |
+
SCl2 5022 e
1
. e =+ -
5022 e2 5012
<
=SC sC e
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Hence,

Y C 'Y '|—|' EY 'Y] SC -SC12 Y,%

+
TSC1p  SC11TeIY2

e

L b s+by
Te[™1" ™ Yo

where bl' bO are appropriate constants. Stationary points will occur if,

90f(6,s)
ds

2, & (Tl oy
53 In|c| +oo iy oyl

3 ' _
ey [ 1n £(s) + o )(b s+b )}

2
here £ = s+
where f(s) a,s +al ao,

-, 4 b
BB _EG) s ) o+

1l
£(s) f2(s) £(s)

£°(s)£(s) - f,(s)(bls+bo) + be(s)

f2(s)

At a stationary point,
£°(s) £(s) = f‘(s)(bls+bo) +b f(s) =0 . (A.46)

This is a third order equation in s, having either 3 real roots or one

real and a pair of complex conjugate. Since f“(s) is of degree ome less

than the degree of f(s), (A.46) will be of odd degree:in general,;ensuring‘

the existence of at least one real root.

In higher ' dimensions, the coefficients of (A.46) can be calculated
iteratively and its real roots extracted by numerical methods. Let the

real roots of (A.46) be sl,...., Sr' and let the roots for which
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3 |
2—§LQLJQ~ >0
Py} | s=s,

be si}..., 8¢ t&r, after reordering.
The value that minimises £(§,s) can then be obtained by simply
comparing the values f(e,si), i=1,...,t, and'éﬂéosing the si that ylelds

the minimum f(e,si).
el



I.5: Numerical Algorithms Group (NAG) subroutines
for the minimi@ation of scalar functions and

the generation ef pseudo~random numbers.
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1. Purpose

'

‘ GOSADF returns a pseudo-random number from the standard normal distribution.

IMPORTANT before using this routine, tead the appropriatexnachine
implementation document to check the interpretation of- italicised:
terms and Other implementation-dependent details.

%"2 Speciflcatlon (FORTRAN IV)

€

real FUNCTION GOSADF(X)
‘real X

3. Description

A sequence of pseudo-random numbers, z from the standard normal

distribution is generated by successive calls to GOS5ADF. Alternate
elements of the sequence are determined from the equations '

il

/-2 n (x
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' Where-xi is a pseudo-random number generated by GOSAAF.

4 References ‘

[1]

(2]

[4]

' BOX, G.E.P. and MULLER, M.E.

A note on the generation of random normal deviates. -
Ann. Math. Stats. Vol. 29, pp. 610-611, 1958,

KNUTH, D. E.
The Art of Computer Programming, vol, 2.
Addison-Wesley, 1969,

NEAVE, H.
A Random Number Package. : S
Computer Applications in the Natural and SOCLal uc1ences, No. 14’,

Dept. of Ceography, University of Nottingham, 1972.

WEATHERBURN, C.E.

A First Course in Mathematical Statistics,
QCambridge Un1versxty Press, 1949.
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5. Parameters

X = real.
X is a dummy parameter, required by the FORTRAN compiler.

6. Error Indicators : None.ijaég'p;J ij#v f);' o

7.'Auxi1iary Routines T

This routine calls the NAG Library routine GOSAAF

8.‘ ing

The timing will vary between machine ranges. The appropriate machine
implementation document may give specific details.

9. Storage

5

There are no internally declared arrays..

10..Accuragx

For a given starting value the sequence of.pseudo-random numbers will
repeat itself after a finite number of direct or . indirect calls to
GOSAAF. The relevant machine implementation document may give details.
Each call of GOSADF alternately calls GOS5AAF twice and then zero times.

11. Further Comments

A different starting point in the sequence of numbers generated may be
obtained by using the NAG Library routines GOSBAF or GOSBBF. =~ The sequence
is also affected by direct or indirect calls to GOSAAF elsewhere in the
program. : : : ;
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GOSAAF

1. Purgose

£

GOSAAF returns a pseudo-random number from a uniform (rectangular)
dlstributlon on the range (O 1).

IMPORTANT before using this routine, read the appropriatenachine
implementation document to check the interpretation of itallcised
terms and other 1mplementatlon—dependent detalls.

2. Specification (FORTRAN v)

_  real FUNCTION GOSAAF(X) , . ‘
c real X . : L e ;5

3. Description
Two multiplicative congruential sequences

= od M
x1,r+1 blxl,r (m )

and

Xy oyl ='~b2x21r (mod M)

are generated. A sequence of pseudo-random numbers,.xr+l, is then
formed using ‘ N :

X fmax 4+ ox ' mod '
r+1 . 1,rh 2,r+1 ( M)

‘and these are scaled by M to produce the required sequence. The values

of the constants used are M = 2”6, b, = 3?5, b,= 59, Xy,0, =X o ¥‘1234567.

} A 250 o
4. References ‘

[1] xNUTH. D.E.
The aArt of Computer Programming, Vol.2,
Addlson-Wesley, 1969,

[2] NEAVE H.
.. A Random Number Package. -
* Computer Applications in the Natural and Social Sciences, No. 14,
Dept. of Geography, Unlversity of Nottingham, 1972

[3] WEATHERBURN C.E.
- A First Course in Mathematical Statistics.
Cambridge University Press, 1949,
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5. Parameters

X - reaZ. ‘ .
X is a dummy parameter, required by the FORTRAN compiler.

6. Error Indicators~ None.”¢Q!?

7. Auxiliary Routinesj‘;None;'

8. Timing

The timing will vary between machine ranges. The appropriate machine
implementaticen document may give specific details.

9. Storage

This may vary between machine ranges but should be small (less than 20
reaZ elements).

10. Accuracy

For a given starting value the sequence of pseudo-random numbers will
repeat itself after a finite number of calls of the routine. The
relevant machine implementation document may give details.

11. Further Comments

The routine is written in machine code. It may be initialised to a
different starting point in the sequence by using the NAG Library
routines GOS5BAF or G05BBF-, i
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