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ON-LINELEAKMONITORING INFLUIDPUMPINGSYSTEMS
A. Pouliezos,∗ G. Stavrakakis,∗∗ and K. Mathioudakis∗∗∗

Abstract

In this paper, a model-based leak detection methodology for fluid

pumping systems is developed. The novelty of this approach lies

in modelling the leak position as a point between a real and an

imaginary valve. The equations that describe the resulting dynamic

system are then put into an input-output form suitable for least

squares estimation. In this way, classic parameter-estimation based

detection methods are applied to moving windows of system data.

Computer simulation illustrates the feasibility of the method.
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1. Introduction

The supervision of technical processes is the focus of in-
creased development because of today’s high demands on
reliability and safety. Latest trends toward high autonomy
systems, as advocated by Antsaklis and co-workers [1] and
Zeigler et al. [2] among others, make the introduction of
sophisticated fault detection methods an essential stage in
the design of modern control systems. One of the areas in
which these ideas have been applied is fluid dynamic sys-
tems. These systems, which either handle or employ fluids
as working media, play a very important role in modern in-
dustry. They are encountered in process industries, power
generation, aeronautical applications, air conditioning or
heating of buildings, and so on. They are implemented in
simple forms of pumping circuits, in more complex piping
networks and even gas turbines.

Leak monitoring in fluid systems is important because
of safety, environmental, and economic issues. The subject
of the present paper is the development of a leak monitor-
ing method for certain types of such systems, namely sys-
tems containing one turbomachinery component, pump, or
compressor. The importance of this work stems from the
fact that although techniques for the performance study
of such systems have been developed, they have been used
for condition monitoring in a very fundamental manner.
On the other hand, although diagnostic techniques have
tremendously progressed in recent years, they have mainly
dealt with electrical and electronic systems, while those
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applied to mechanical systems have developed along rather
independent paths.

Leak detection methods may be classified according
to their time characteristics, into intermittent off-line
testing and continuous on-line supervision. Some typi-
cal off-line methods include hydrostatic pressure testing,
sonic pig testing, and direct inspection. These simple
techniques can detect tiny long-term leaks, but at the
expense of detection speed.

On-line detection methods attempt to overcome these
shortcomings. They can also be subdivided into conven-
tional and advanced leak detection methods. The former
rely on static process models and are mainly based on bal-
ancing the input and output flows. However, leaks smaller
than 2% of the total flow for liquids and 10% for gases
cannot be detected by these methods due to noise effects
and inherent dynamics. An added difficulty is the un-
availability of adequate instrumentation, which is limited
to flow-rate and pressure sensors. Furthermore, transient
effects are not taken into account. Advanced leak detec-
tion methods are based on comprehensive dynamic process
models using available on-line measurements.

Previous attempts in this direction are presented in
the surveys of Iserman [3] and Lappus and Schmidt [4].
Iserman and Siebert [5], proposed a non-parametric cross-
correlation in which leak detection is performed by cross-
correlating the differences:

∆ �M0(k) = �M0(k)− �M∗0 (k)

∆ �M1(k) = �M1(k)− �M∗1 (k)

where �M0(k), �M1(k) denote the flow rates at the inlet and
exit, and the starred quantities are obtained by discrete-
time low pass filtering. Leak location and flow is then
estimated by calculation of the point of intersection of the
pressure curves. Experimental results in a 65km pipeline
demonstrated the ability of this method to detect liquid
leaks of about 0.19% after 98s of their occurrence and
estimate their location within ±500m (0.7%) after 188s.
Schmidt et al. [6] proposed a leak detection scheme for
gas transport pipelines based on a Luenberger observer.
Lappus [7] extended this approach to gas transmission
pipelines. Among the first to include an explicit model of
the fault, Digernes describes a multiple model hypothesis
testing method, employing parallel Kalman filters, for leak
detection in an oil pipeline 30km long [8]. In this approach
each filter models a leak at a predefined location. A leak
of 1% of the total flow is reported to be detected after
160s. Benkherouf et al. [9] used a single extended Kalman
filter in a model which included artificial leak states at
prespecified points.

In this paper, a parameter estimation based method
for the detection of leaks in fluid pumping systems is
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proposed. A dynamic model of the fluid system is utilized,
with explicit modelling of the leak size and location. The
estimation algorithm is a recursive sliding window least
squares method, with low computational load and fast
detection rates, making it very suitable for low-cost on-line
applications.

2. Fluid Pumping System Dynamic Modelling

An essential element of the proposed method of leak mon-
itoring is the development of an accurate mathematical
model of the dynamics of the supervised fluid system. In
order to build such a model, the system is subdivided
into components and the function of each component is
described through the appropriate equations. The overall
model is then derived through application of the conditions
imposed by the requirement of matching the components
in the particular circuit layout.

In this investigation, we will consider systems that are
using an incompressible fluid and contain one turbocom-
ponent i.e., a turbopump. The elements that constitute
such systems are: pipes, tanks and obstruction elements
such as valves, bends, contractions, etc. In particular, let
the pumping system of fig. 1 be considered.

Figure 1

The novel idea in this configuration is the fact that the
unknown leak point is positioned between an actual and
an imaginary valve. It is shown in Appendix 1 that the
dynamic equation describing the behaviour of this system
is:

∂M1

∂t
= c1M

2
1 (t) + c2f(M1, ω) (1a)

M1(t)−M6(t)

M1(t)
= σ(1b)

where:

c1 =
ξ1 +

λl1L
D +

(

1 + ξ2 +
λlL6
D

)

(1− σ2)
2ρ (σl1L + l(1− σ))A

(2)

c2 =
A

σl1L + l(1− σ)
(3)

and the physical parameters denote:
Mi(t): fluid flow rate at point i (kg s−1)
ω(t): pump rotational speed (s−1)

f(M1, ω): characteristic of pump
ρ: fluid density (kg/m3)
λ: friction coefficient
σ: leak flow rate as percentage of M1 (%)
D: diameter of pipe (m)
A: cross-sectional area of pipe (m2)
ξ1: loss coefficient of valve positioned before the leak

ξ2: loss coefficient of valve positioned after the leak
l: total length of pipe (m)

l1L: length of pipe from point 1 to leak point (m)
lL6: length of pipe from leak point to point 6 (m)

In particular the characteristic of the pump is ex-
pressed in the form:

f (M1(t), ω(t)) = h1M
2
1 (t) + h2M1(t)ω(t) + h3ω

2(t) (4)

where the hi are appropriate known pump constants. This
expression covers the whole range of characteristics of the
pump. In this way ω(t) is taken as the input to the system
and (1a) and (1b) can be conveniently written as:

∂M1

∂t
=

[

M2
1 (t)ω(t)M1(t)ω

2(t)
]











θ11

θ12

θ13











(5a)

M1(t)−M6(t)

M1(t)
= θ21 (5b)

where:

θ11 =
ξ1 +

λl1L
D +

(

1 + ξ2 +
λlL6
D

)

(1− σ2)
2ρ (σl1L + l(1− σ))A

+
Ah1

σl1L + l(1− σ)
(6a)

θ12 =
Ah2

σl1L + l(1− σ)
(6b)

θ13 =
Ah3

σl1L + l(1− σ)
(6c)

θ21 = σ (6d)

Equations (5a) and (5b) are linear-in-the-parameters
differential and algebraic equations, respectively, and
therefore, the parameter vectors θi can be estimated from
input-output data using the appropriate techniques.

3. Leak Monitoring

A well-designed leak monitoring system should perform
the following tasks [4]:
• detection of leak
• estimation of the leak location
• estimation of the leak flow rate
• reorganization following a positive leak decision (clos-
ing valves, etc.)
The performance of a leak monitoring system can be

ascertained from the following requirements:
• the size of detectable leak should be as small as possible
• the time to detection should be as short as possible
• the required duration of the leak should be small
• the probability of false alarms should be negligible
(<0.005)
Since leak size is important, leaks are classified as:

2



• pinhole leaks: σ < 1% of the average pipeline flow
• small-size leaks: 1% < σ < 10%
• large-size leaks: σ > 10%
In the proposed method, attention is given to all

the above requirements. The different tasks will now be
specified.

3.1 Leak Detection

As mentioned earlier, the dynamics of the process are
put in the form of a linear-in-the-parameters differential
equation. If measurements of M1 and ω are taken at
discrete time instants, then for every measurement pair,
y1(k), y2(k), (5a) and (5b) can be written in discrete time
as follows:

yi(k) = uTi (k)θi + ei(k); k = 0, th, . . . , nth, . . . (7)

where:

y1(k) ≡
∂M1

∂t

∣

∣

t=k
(output data)

y2(k) ≡
M1(t)−M6(t)

M1(t)
(output data)

u1(k) ≡ bM2
1 (k)ω(k)M1(k)ω

2(k)c (input data)

u2(k) ≡ 1 (input data)

θ1 = [θ11 θ12 θ13] (unknown parameter vector)

θ2 = [θ21] (unknown parameter vector)

Also th is the sampling interval and ei(k) a random
term representing modelling and measurement errors.

The parameter estimation method used is a recursive,
moving window, least squares method [10]. This method
provides fast detection times due to the fact that only
the most recent window of nw data pairs is used for the
parameter estimation. Furthermore, its recursive nature
makes it especially suitable for on-line applications. The
relevant equations applied twice for theta1, θ2 are:


θ(k+1) = 
θ(k)−P(k+1)
[

Γ(k + 1)
θ(k)− δ(k + 1)
]

(8a)

P−1(k + 1) = P−1(k) + Γ(k + 1) (8b)

where:

Γ(k+1) = u(k+1)uT (k+1)−u(k−nw+1)uT (k−nw+1)
(8c)

δ(k+1) = u(k+1)y(k+1)−u(k−nw+1)y(k−n2+1) (8d)

Here nw is the moving window length, u(k+1), y(k+
1) are the current measurements entering the moving
window, and u(k−nw+1), y(k−nw+1) are the discarded

measurements leaving the moving window. The equations
are initialized by their normal (no-fault) operation values.

Once the vector θ1 and scalar θ2 have been estimated,
the physical parameters of interest must be calculated.
Unfortunately (6b) and (6c) alone are not sufficient to

calculate 
l1L and 
σ simultaneously, since they both reduce
to the form:


σ(l − 
l1L) = 
σ
lL6 = l − Ahi

θli

; i = 2, 3 (9)

Furthermore (6a) requires knowledge of the ξi’s whose
values (0 or ξ) depend on the leak position and hence
cannot be considered known. Therefore, measurement of
M6(t) must be made, which when inserted in (5b) gives


σ. Subsequently, 
l1L can be calculated from either (6b) or
(6c). Equation (6a) can be used to verify the results.

Some implementation issues must also be made.
Firstly, the derivative ∂M1/∂t required in the procedure,
is usually calculated either numerically or by the use of
state variable filters [11]. The former approach is adopted
in this study and the 9-point central difference formula is
used, given by:

y′(t) = (1/840h)[3y(t− 4h)− 32y(t− 3h)

+168y(t− 2h)− 672y(t− h) + 672y(t+ h)

−168y(t+ 2h) + 32y(t+ 3h)− 3y(t+ 4h)]

where h is the step length.
Secondly, the window length, nw, must be specified.

This is usually selected by simulation, since its value
affects the quality of the estimates and consequently the
probability of correct detections and false alarms. On
the other hand, too large a value will result in increased
detection delay time (decreased sensitivity), since a leak
will take a longer time to affect the estimates. In such
cases, a compromise is made based on the situation at
hand. Note, however, that because of the recursive nature
of the algorithm given by (8), window size does not affect
the calculation speed. Thirdly, it is assumed that all other
parameters of (5a) remain constant, i.e., no fault that
affects their values takes place. Situations where this is
not the case are the subject of ongoing research.

Lastly, the form of (7) is not a realistic one. In practice,
noise will enter into the measurements of M1(t) and ω(t)
modifying the observation equation. In that case, instead
of (7), we will have:

y(k) =
[

(M1(k) + vM (k))2 (ω(k) + vω(k))

(M1(k) + vM (k)) (ω(k) + vω(k))
2
]T

θ1

= bM2
1 (k) + v2M (k) + 2M1(k)vM (k)ω(k)M1(k)

+vω(k)M1(k) + ω(k)vM (k) + vω(k)vM (k)

3



ω2(k) + v2ω(k) + 2ω(k)vω(k)cθ1 (10a)

σ =
(M1(k) + vM (k))− (M6(k) + wM (k))

(M1(k) + vM (k))
(10b)

where vM (k), wM (k), vω(k) are Gaussian measurement
noise for the pressures and angular velocity respectively,
having zero means and standard deviations sM , and sω.
Furthermore, since y(k) is produced by numerically dif-
ferentiating M1(t), the noise will enter into this operation
as well. Neglecting any numerical errors, we will then, in
effect, compute:

y(k) =
∂

∂t
(M1(k) + vm(k)) (11)

The situation of noisy regressors is well known, and can
be treated in the case of ARX systems, for example, by the
use of Instrumental Variable methods [12]. However, this
case is much more complicated and Instrumental Variable
methods are not applicable. The proposed procedure relies
on the following:

If a pre-filter window of nf pairs of input-output
data are gathered and the mean value of (10a) over these
measurements is taken, it is shown in Appendix 2 that θ1
and σ can be calculated from the equations:

1

nf

kf
∑

i=k

∂

∂t
M1(i) =





1

nf

kf
∑

i=k

[

M2
1 (i)ω(i)M1(i)ω

2(i)
]

− cn
[


s2M 0 
s2ω
]



 θ1

1− σ =

1
nf

∑k+nf−1
i=k M6(i)

1
nf

∑k+nf−1
i=k M1(i)

where cn = nf/(nf − 1), and kf = k + nf − 1.

Once the estimates 
l1L, 
σ of l1L and σ have been ob-
tained, a statistical procedure must be employed to decide
whether a leak has occurred or not. Such a procedure
is described by Stavrakakis et al. [13]. In the present
situation however, a leak can be declared if 
σ exceeds a
predefined limit. This limit is obtained by considering
both the accuracy of the flow measuring device and the
desired threshold of leak flow.

3.2 Leak Size and Position Estimation

Following a leak detection, the leak size and position
estimation phase is entered. In this phase, a normal (non-
window) least squares estimation procedure is used, which
is started at the detection instant. The initial values used
are the system’s estimates at the detection instant for θi,
i = 1, 2 and a large diagonal matrix for the estimates’
covariance matrix reflecting the high initial uncertainty.
In this way, it is assured that only data that contain the
faulty parameters are used, so that the estimate’s accuracy

is improved. The amount of data employed in this phase
depends on the required accuracy, but 2000 points should
be adequate for most applications.

4. Simulation Study

To demonstrate the effectiveness of the proposed method,
the system of fig. 1 with the following parameter values
was simulated on a microcomputer: l = 130m, D = 0.07m,
ρ = 1000kg/m3, ξ = 2.25, and λ = 0.0035. A valve was
placed at a distance of l12 = 5m from the beginning of
the pipe, while the pump was operated using (4) with h1
= -314.97, h2 = 0.316, and h3 = 0.02053. An artificial
leak of σ = 2% developed at t = 500sec at a point l1l =
60m resulting in ξ1 = 2.25 and ξ2 = 0. As input to the
system, a harmonic signal given by ω(t) = 1500 + 500sin
(φt/25) was applied. The system was simulated for 2000
sec. Equation (5a) was solved using a fifth-order Runge-
Kutta with variable step length [14]. For the numerical
differentiation, the nine-point formula with h = 0.5 was
used. Different combinations of noise variables and pre-
filter sizes were examined and results from some of the
runs are shown in figs. 3�7. In all cases the detection
window size was nw = 100.

Figures 3�7

In figs. 3�4, the results of a typical simulation with
no measurement errors are shown. In this case noise
was applied directly to the model equations. The noise
variances were var(e1(k)) = (0.005)2 and var(e2(k)) =
(0.05)2. In figs. 5�6, the results for the same system but
with measurement errors are shown. Here var(vM (k)) =
(0.001)2, var(vω(k)) = (0.01)2, and nf = 30. As seen, the
proposed system works satisfactorily in both cases, giving
excellent leak size and position estimates. In the case
of a real system, greater accuracy is expected since the
sample will exceed the 2000 mark used in the simulations.
Furthermore, it must be emphasized that the harmonic
test input used is the worst possible case and covers
every combination of actual inputs. In these cases, better
examples are also expected.

As seen from the simulations, estimates of leak size σ
are much better than estimates of leak position. This is
because leak position is estimated indirectly using (9) for
I = 3. Its accuracy depends both on the quality of the
estimate of θ3 and the system parameters D and h3 since:

δ
lL6 = δ
θ13
Ah3

θ213

It may be argued that the noise variances used are
small. However, the RHS of (5a) is also small as shown in
fig. 2 and there are instants when the noise term completely
covers the output signal y(t).

4



5. Conclusions

A model-based leak detection system for fluid pumping
systems is developed. With the proposed method, both
the leak size and leak position are estimated by a simple
and fast estimation procedure suitable for on-line imple-
mentation. The problem of direct measurement noise in
the regressors, inherent in all practical applications, is also
addressed and a viable solution is proposed. The whole
system is successfully tested by simulation on a micro-
computer. Current research involves testing the proposed
algorithm on a real industrial system.
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Appendix 1

Referring to fig. 1 and the corresponding notation, each
part’s dynamics are considered separately and then com-
bined to produce the overall model. In the present model,

the fluid density and pipe diameter are considered to be
constant throughout the system.
• For the pipe between the points 1 and 2 it holds that:

P1 − P2 =
l12
A

∂M1

∂t
+

λ12l12
2ρDA2

M2
1 (A.1)

where Pi is the total pressure at point i and λij the friction
coefficient for the part of pipe between points i and j.
• For the valve 2, 3 it holds that:

P2 − P3 =
ξ1

2ρA2
M2

1 (A.2)

• For the pipe between the points 3 and 4, where the
leak is encountered, there are two models: one for the part
of the pipe before the leak and one for the part after it.
For the former it holds that:

P3 − PL =
l3L
A

∂M1

∂t
+
λ3Ll3L
2ρDA2

M2
1 (A.3)

while for the latter:

PL − P4 =
lL4
A

∂M2

∂t
+
λL4lL4
2ρDA2

M2
2 (A.4)

M1 =M2 +Ml (A.5)

M1 = σM1 (A.6)

• For the valve 4, 5 it holds that:

P4 − P5 =
ξ2

2ρA2
M2

2

• For the pipe between the points 5 and 6 it holds that:

P5 − P6 =
l56
A

∂M2

∂t
+
λ56l56
2ρdA2

M2
2 (A.8)

• For the pump it holds that:

P1 − P0 = f(M1, ω) = ∆P (A.9)

If it is assumed that the leak is small, the friction
coefficients λij can be considered equal to a single λ.
Furthermore, if the system discharges to a tank with fluid
in the same pressure P0 as the feeding tank (which will be
the case if both tanks are open or the fluid returns to the
initial tank), then:

P6 = P0 +
M2

2

2ρA2
(A.10)

Using (A.1)-(A.10) gives:

∂m1

∂t
= −

ξ1 +
λl1L
D +

(

1 + ξ2 +
λlL6
D

)

(1− σ)2

2ρ (σl1L + l(1− σ))A
M2

1

+
A

σl1L + l(1− σ)
f(M1, ω) (A.11)
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Equation (A.11) is the system’s state equation and
describes the dynamic behaviour of the system. When the
system operates in steady state, (A.11) becomes:

f(M1, ω) = −
ξ1 +

λl1L
D +

(

1 + ξ2 +
λlL6
D

)

(1− σ)2

2ρA2
M2

1

(A.12)

= CM2
1 (A.13)

To obtain the initial values used in the numerical
solution of (A.11), the input function described by (4) is
used, together with (A.12), giving:

M1(t0) =
h2ω(t0) +

[

(h2ω(t0))
2 + 4(C − h1)h3ω2(t0)

]1/2

2(C − h1)
(A.14)

Appendix 2

Taking the weighted sum of nf input-output data points
gives for (5a):

1

nf

k+nf−1
∑

i=k

y(i) =
1

nf

k+nf−1
∑

i=k

∂

∂t
(M1(i) + vM (i))

=
∂

∂t

k+nf−1
∑

i=k

1

nf
M1(i) +

∂

∂t





1

nf

k+nf−1
∑

i=k

vM (i)





=
∂

∂t

k+nf−1
∑

i=k

1

nf
M1(i)

The RHS of (9) will consist of the following terms:
1)

1

nf

k+nf−1
∑

i=k

[

M2
1 (i) + v2M (i) + 2M1(i)vm(i)

]

=
1

nf





k+nf−1
∑

i=k

[

M2
1 (i) + 2M1(i)vM (i)

]



+ 
s2M

2)

1

nf

k+nf−1
∑

i=k

[

ω2(i) + v2ω(i) + 2ω(i)vω(i)
]

=
1

nf





k+nf−1
∑

i=k

[

ω2(i) + 2ω(i)vω(i)
]



+ 
s2ω

3)

1

nf

k+nf−1
∑

i=k

[ω(i)M1(i) + vωvM (i) + ω(i)vM (i)

+M1(i)vω(i)] =

=
1

nf





k+nf−1
∑

i=k

[ω(i)M1(i) + ω(i)vM (i) +M1(i)vω(i)]





+c
ov(vM , vω)

Collecting together all the terms, we get:

1

nf

k+nf−1
∑

i=k

∂

∂t
M1(i) =

1

nf

k+nf−1
∑

i=k

[

M2
1 (i)ω(i)M1(i)ω

2(i)
]

θ+

+
1

nf

k+nf−1
∑

i=k

[2M1(i)vM (i)ω(i)vM (i)

+M1(i)vω(i)2ω(i)vω(i)] θ+

+cnb
s2Mc
ov(vM , vω)
s2ωcθ

where cn =
nf
nf−1 .

The first of the three terms of the RHS is similar to
the system equation (5a). The second term consists of
terms that are not usually zero, unless the values of M1(i)
and ω(i) are fairly constant over the filtering interval of nf
values. Hence, if we let M1(i) =M1 and ω(i) = ω:

1

nf

k+nf−1
∑

i=k

[2M1(i)vM (i)ω(i)vM (i)

+M1(i)vω(i)2ω(i)vω(i)] =




2M1

nf

k+nf−1
∑

i=k

vM (i)
...
ω

nf

k+nf−1
∑

i=k

vM (i)

+
M1

nf

k+nf−1
∑

i=k

vω(i)
...
2ω

nf

k+nf−1
∑

i=k

vω(i)



 = 0

The third term consists of known values, and further-
more since the noise measurements are independent:

cov(vM , vω) = 0

Summing up, if noisy measurements are collected and
averaged over nf values, then the original parameter vector
θ can be estimated from the equation:

1

nf

k+nf−1
∑

i=k

∂

∂t
M1(i) =

6



=





1

nf

k+nf−1
∑

i=k

[

M2
1 (i)ω(i)M1(i)ω

2(i)
]

− cn
[


s2M0
s2ω
]



0

Rearranging (5b) produces:

1− σ = σ′ =
M6(k) + wM (k)

M1(k) + vM (k)
(A.15)

Operating on (A.15) as for (5a) yields:

1

nf

k+nf−1
∑

i=k

σ′ =

1
nf

∑k+nf−1
i=k (M6(i) + wM (i))

1
nf

∑k+nf−1
i=k (M6(i) + wM (i))

or:

σ′ =

1
nf

∑k+nf−1
i=k M6(i)

1
nf

∑k+nf−1
i=k M1(i)

since the noises are zero mean. Now (A.16) cannot be used
to estimate σ unless, as before, the M1 and M6 are fairly
constant in the pre-filter window. Under this restriction,
(A.16) will filter out the noise and produce satisfactory
estimates for σ.
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Figure Captions

Figure 1. Schematic diagram of simulated pumping sys-
tem.

Figure 2. Variation of ∂M/∂t (simulated and calculated).

Figure 3. Leak position estimate, no measurement noise,
var(e1(k)) = (0.005)2 and var(e2(k)) = (0.05)2.

Figure 4. Leak size (%) estimate, no measurement noise,
var(e1(k)) = (0.005)2 and var(e2(k)) = (0.05)2.

Figure 5. Leak position estimate, nf = 30, no modelling
noise, var(vM (k)) = (0.001)2 and var(vω(k)) = (0.01)2.

Figure 6. Leak size estimate (%), nf = 30, no modelling
noise, var(vM (k)) = (0.001)2 and var(vω(k)) = (0.01)2.
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