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Nonsmooth and Nonconvex Optimization
for the Design and Order Reduction of Robust
Controllers Used in Smart Structures

A.J. Moutsopoulou, A.T. Pouliezos, and G.E. Stavroulakis

Abstract H-infinity controller design for linear systems is a difficult, nonconvex
typically nonsmooth optimization problem when the controller is fixed to be of or-
der less than the one of the open-loop plant, a requirement with some importance
in embedded smart systems. In this paper we use a new Matlab package called
HIFOO, aimed at solving fixed-order stabilization and local optimization problems;
it is based on a new hybrid solution algorithm. The problem is to reduce the vibra-
tion of the smart system using H-infinity control and nonsmooth optimization.

Keywords Fixed-order controller design · H-infinity control · Nonconvex
optimization · Nonsmooth optimization · Smart structures · Robust structural
control

1 Introduction

A composite beam laminated with piezoelectric sensors and actuators and subjected
to external loads is considered as a model example in this paper. The governing
equation of the beam is formulated. Finite elements are used to approximate the dy-
namic response of the beam. Vibration control problem for flexible structure is con-
sidered and performance specification is stated in terms of a disturbance attenuation
requirement for external disturbances. H-infinity (H∞ control strategy) is applied to
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Fig. 1 Smart beam

solve the posed problem. Considering the uncertainty, which arises from neglecting
higher order, dynamics, insufficient knowledge of the real plant parameters, external
disturbances and measure noise, H∞ robust controller is designed [1–5].

By using the classical approach a H∞ controller of order equal to 36 has been
found. The fact that controller order, which is equal to the order of the system, is
relatively higher than the order of classical controllers such as PI and LQR has led a
number of researchers to develop order reduction algorithms. The most widely used
such algorithm, known as HIFOO, has been implemented in a Matlab environment,
and is the one used in the following procedure [6–10].

HIFOO is a public-domain Matlab package initially designed for H∞ fixed-order
controller synthesis, using nonsmooth nonconvex optimization techniques. It was
later on extended to multi-objective synthesis, including strong and simultaneous
stabilization under H∞ constraints. HIFOO relies upon HANSO, a general purpose
implementation of an hybrid algorithm for nonsmooth optimization, mixing stan-
dard quasi-Newton and gradient sampling techniques. The acronym HIFOO stands
for H∞ fixed order optimization, and the package is aimed at designing a stabilizing
linear controller of fixed order for a linear plant in standard state-space configuration
while minimizing the H∞ norm of the closed-loop transfer function.

2 Mathematical Modelling

A cantilever slender beam with rectangular cross-sections is considered. Four pairs
of piezoelectric patches are embedded symmetrically at the top and the bottom sur-
faces of the beam, as shown in Fig. 1.

The beam is from graphite-epoxy T300-976 and the piezoelectric patches are
PZT G1195N [5, 11]. The top patches act like sensors and the bottom like actua-
tors. The resulting composite beam is modelled by means of the classical laminated
technical theory of bending. Let us assume that the mechanical properties of both
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Table 1 Parameters of the composite beam

Parameters Values

Beam length, L 0.3 m

Beam width, W 0.04 m

Beam thickness, h 0.0096 m

Beam density, ρ 1600 kg/m3

Young’s modulus of the beam, E 1.5 × 1011 N/m2

Piezoelectric constant, d31 254 × 10−12 m/V

Electric constant, ξ33 11.5 × 10−3 V m/N

Young’s modulus of the piezoelectric element 1.5 × 1011 N/m2

Width of the piezoelectric element bS = bA = 0.04 m

Thickness of the piezoelectric element hS = hA = 0.0002 m

the piezoelectric material and the host beam are independent in time. The thermal
effects are considered to be negligible as well [12, 13].

The beam has length L, width W and thickness h. The sensors and the actuators
have width bS and bA and thickness hS and hA, respectively. The electromechanical
parameters of the beam of interest are given in Table 1.

2.1 Reduced Model of the Piezoelectric Composite

In order to derive the basic equations for piezoelectric sensors and actuators (S/As),
we assume that:

• The piezoelectric S/A are bonded perfectly on the host beam;
• The piezoelectric layers are much thinner then the host beam;
• The piezoelectric material is homogeneous, transversely isotropic and linearly

elastic;
• The piezoelectric S/A are transversely polarized (in the z-direction) [5, 13].

Under these assumptions the three-dimensional linear constitutive equations are
given by [1, 9], {

σxx

σxz

}
=

[
Q11 0

0 Q55

]({
εxx

εxz

}
−

[
d31
0

]
Ez

)
(2.1)

Dz = Q11d31εxx + ξxxEz (2.2)

where σxx , σxz denote the axial and shear stress components, Dz, denotes the trans-
verse electrical displacement; εxxand εxz are a axial and shear strain components;
Q11, and Q55, denote elastic constants; d31, and ξ33, denote piezoelectric and di-
electric constants, respectively. Equation (2.1) describes the inverse piezoelectric
effect and Eq. (2.2) describes the direct piezoelectric effect. Ez, is the transverse
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component of the electric field that is assumed to be constant for the piezoelectric
layers and its components in xy-plain are supposed to vanish. If no electric field is
applied in the sensor layer, the direct piezoelectric equation (2.2) gets the form,

Dz = Q11d31εxx (2.3)

and it is used to calculate the output charge created by the strains in the beam [2].

2.2 Equations of Motion

The length, width and thickness of the host beam are denoted by L, b and h. The
thickness of the sensor and actuator is denoted by hS and hA. We assume that:

• The beam centroidal and elastic axis coincides with the x-coordinate axis so that
no bending-torsion coupling is considered;

• The axial vibration of the host beam centreline is considered negligible;
• The displacement field {u} = (u1, u2, u3) is obtained based on the usual Timo-

shenko assumptions [14],

u1(x, y, z) ≈ zϕ(x, t)

u2(x, y, z) ≈ 0

u3(x, y, z) ≈ ω(x, t)

(2.4)

where ϕ is the rotation of the beams cross-section about the positive y-axis and
w is the transverse displacement of a point of the centroidal axis (y = z = 0).

The strain displacement relations can be applied to Eq. (2.4) to give,

εxx = z
∂ϕ

∂x
, εxz = ∂ω

∂x
(2.5)

We suppose that the transverse shear deformation εxx is equal to zero [14].
In order to derive the equations of the motion of the beam we use Hamilton’s

principle, ∫ t1

t2

(δT − δU + δW)dt = 0 (2.6)

where T [15] is the total kinetic energy of the system, U is the potential (strain)
energy and W is the virtual work done by the external mechanical and electrical
loads and moments. The first variation of the kinetic energy is given by,

δT = 1

2

∫
V

ρ

{
∂u

∂t

}r{
∂u

∂t

}
dV

= b

2

∫ L

0

∫ h
2 +hs

− h
2 −hA

ρ

(
z
∂ϕ

∂t
δ
∂ϕ

∂t
+ ∂ω

∂t
δ
∂ω

∂t

)
dzdx (2.7)
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Fig. 2 Beam finite element

The first variation of the potential energy is given by,

δU = 1

2

∫
V

δ{ε}T {σ }dV

= b

2

∫ L

0

∫ h
2 +hs

− h
2 −hA

[
Q11

(
z
∂ω

∂x
δ

)(
z
∂ω

∂x

)]
dzdx (2.8)

If the load consists only of moments induced by piezoelectric actuators and since
the structure has no bending twisting couple then the first variation of the work has
the form [15],

δW = b

∫ L

0
MAδ

(
∂ϕ

∂x

)
dx (2.9)

where MA is the moment per unit length induced by the actuator layer and is given
by,

MA =
∫ − h

2

− h
2 −hA

zσA
xxdz =

∫ − h
2

− h
2 −hA

zQ11d31E
A
z dz

(
EA

z = VA

hA

)
(2.10)

2.3 Finite Element Formulation

We consider a beam element of length Le, which has two mechanical degrees of
freedom at each node: one translational ω1 (respectively ω2) in direction z and one
rotational ϕ1 (respectively ϕ2), as it is shown in Fig. 2. The vector of nodal displace-
ments and rotations qe is defined as [2],

qr
e = [ω1,ψ1,ω2,ψ2] (2.11)

The beam element transverse deflection ω(x, t) and the beam element rotation
ψ(x, t) of the beam are continuous and they are interpolated within the beam by
using Hermitian linear shape functions Hω

i and H
ψ
i as follows [4],

ω(x, t) =
4∑

i=1

Hω
i (x)qi(t)

ψ(x, t) =
4∑

i=1

H
ψ
i (x)qi(t)

(2.12)
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This classical finite element procedure leads to the approximate (discretized) varia-
tional problem. For a finite element the discrete differential equations are obtained
by substituting the discretized expressions (2.12) into Eqs. (2.7) and (2.8) to eval-
uate the kinetic and strain energies. Integrating over spatial domains and using the
Hamilton principle (2.6) the equation of motion for a beam element are expressed
in terms of nodal variable q as follows [3, 5, 11],

Mq̈(t) + Dq̇(t) + Kq(t) = fm(t) + fe(t) (2.13)

where M is the generalized mass matrix, D the viscous damping matrix, K the
generalized stiffness matrix, fm the external loading vector and fe the generalized
control force vector produced by electromechanical coupling effects. The indepen-
dent variable q(t) is composed of transversal deflections ω1 and rotations ψ1, i.e.,
[16]

q(t) =

⎡
⎢⎢⎢⎢⎢⎣

ω1
ψ1
...

ωn

ψn

⎤
⎥⎥⎥⎥⎥⎦

(2.14)

where n is the number of nodes used in analysis. Vectors ω and fm are positive up-
wards. To transform to state-space control representation, let (in the usual manner),

ẋ(t) =
[
q(t)

q̇(t)

]
(2.15)

Furthermore to express fe(t) as Bu(t) we write it as f ∗
e u where f ∗

e the piezoelec-
tric force is for a unit applied on the corresponding actuator, and u represents the
voltages on the actuators. Furthermore, d(t) = fm(t) is the disturbance vector [17].
Then,

ẋ(t) =
[

O2n×2n I2n×2n

−M−1K −M−1D

]
x(t) +

[
O2n×2n

M−1f ∗
e

]
u(t) +

[
O2n×2n

M−1

]
(2.16)

= Ax(t) + Bu(t) + Gd(t) = Ax(t) + [
B G

][
u(t)

d(t)

]

= Ax(t) + B̃ũ(t) (2.17)

The previous description of the dynamical system will be augmented with the output
equation (displacements only measured) [2],

y(t) = [
x1(t) x3(t) · · · xn−1(t)

]T = Cx(t) (2.18)

In this formulation u is n × 1 (at most, but can be smaller), while d is 2n × 1. The
units used are compatible for instance m, rad, sec and N.
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3 Design Objectives and System Specifications

For the description of system uncertainties the known from the control theory Δ

technique is used. With this technique, which will be outlined later, the uncertainties
are introduced in the system as additional feedback branches, similarly to the intro-
duction of control branches. The robust control design tries then to design the op-
timal control feedback under perturbation coming from the worst uncertainty feed-
back (for details [12]).

The structured singular value of a transfer function matrix is defined as,

μ(M) =
⎧⎨
⎩

1

minkm{det(I − kmMΔ) = 0, σ̄ (Δ) ≤ 1}
0, if no such quantity is defined

(3.1)

In words it defines the smallest structured Δ (measured in terms of σ̄ (Δ)) which
makes det(I − MΔ) = 0: then μ(M) = 1/σ̄ (Δ). It follows that values of μ smaller
than 1 are desired (the smaller the better: a larger variation is allowed) [12].

3.1 Design Objectives

Design objectives fall into two categories:

Nominal performance

1. Stability of closed loop system (plant + controller).
2. Disturbance attenuation with satisfactory transient characteristics (overshoot,

settling time).
3. Small control effort.

Robust performance

4. (1)–(3) above should be satisfied in the face of modelling errors [12].

3.2 System Specifications

To obtain the required system specifications to meet the above objectives we need
to represent our system in the so-called (N,Δ) structure. To do this let us start
with the simple typical diagram of Fig. 3. In this diagram there are two inputs, d

(disturbances) and n (noise), and two outputs, u (control vector) and x (state vector).
In what follows it is assumed that,∥∥∥∥d

n

∥∥∥∥
2
≤ 1,

∥∥∥∥u

x

∥∥∥∥
2
≤ 1 (3.2)

If that’s not the case, appropriate frequency-dependent weights can transform origi-
nal signals so that the transformed signals have this property.
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Fig. 3 Classical control
block diagram

Redrawing Fig. 3 in frequency domain we get Fig. 4:

Fig. 4 Detailed two-port
diagram

or in less detail Fig. 5,

Fig. 5 Two-port diagram

with,

z =
[

u

x

]
, w =

[
d

n

]
(3.3)

where z are the output variables to be controlled, and w the exogenous inputs.
Given that P has two inputs and two outputs it is, as usual, naturally partitioned

as, [
z(s)

y(s)

]
=

[
Pzw(s) Pzu(s)

Pyw(s) Pyu(s)

][
w(s)

u(s)

]
oρ=P(s)

[
w(s)

u(s)

]
(3.4)

Furthermore,

u(s) = K(s)y(s) (3.5)

Substituting (3.5) in (3.4) gives the closed loop transfer function Nzw(s),

Nzw(s) = Pzw(s) + Pzu(s)K(s)
(
I − Pyu(s)K(s)

)−1
Pyw(s) (3.6)



Nonsmooth and Nonconvex Optimization for the Design 577

4 Controller Synthesis

It is possible to approximately synthesize a controller that achieves given perfor-
mance in terms of the structured singular value μ.

In this procedure known as (D,G-K) iteration (2.14) the problem of finding a
μ-optimal controller K such that μ(Fu(F (jω),K(jω))) ≤ β , ∀ω, is transformed
into the problem of finding transfer function matrices D(ω) ∈ D and G(ω) ∈ G,
such that,

sup
ω

σ̄

[(
D(ω)Fu(F (jω),K(jω))D−1(ω)

γ
− jG(ω)

)(
I + G2(ω)

)− 1
2

]
≤ 1, ∀ω

(4.1)

Unfortunately this method does not guarantee even finding local maxima. However
for complex perturbations a method known as D-K iteration is available (also im-
plemented in Matlab) [11, 12]. It combines H∞ synthesis and μ-analysis and often
yields good results. The starting point is an upper bound on μ in terms of the scaled
singular value,

μ(N) ≤ min
D∈D

σ̄
(
DND−1) (4.2)

The idea is to find the controller that minimizes the peak over frequency of its upper
bound, namely,

min
K

(
min
D∈D

∥∥DN(K)D−1
∥∥∞

)
(4.3)

by alternating between minimizing ‖DN(K)D−1‖∞ with respect to either K or D

(while holding the other fixed) [12, 18, 19].

1. K-step. Synthesize an H∞ controller for the scaled problem minK ‖DN(K) ×
D−1‖∞ with fixed D(s).

2. D-step. Find D(jω) to minimize at each frequency σ̄ (DND−1(jω)) with
fixed N .

3. Fit the magnitude of each element of D(jω) to a stable and minimum phase
transfer function D(s) and go to Step 1.

5 Relation to the Beam Control Problem

Our aim is to find the appropriate N matrix, as defined in (3.6). To this aim it is
useful, to derive the input-output relations for the original model,[

u

e

]
= F(s)

[
d

n

]
⇒ z = F(s)w (5.1)

as depicted in Fig. 6, where the beam is described by,
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Fig. 6 Beam with controller

ẋ(t) = Ax(t) + [B G ]
[

u(t)

d(t)

]
(5.2)

⇒ H(s) = (sI − A)−1 (5.3)

and J is used to pick up those states that we are interested in regulating (may be
different from y). In most of the displacements at the four nodes of the discretized
structure are assumed to be measured i.e. J will be,

J =

⎡
⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎦ (5.4)

To continue, use appropriate weighting and redraw Fig. 6 to fit our problem:

Fig. 7 Weighted block diagram for the beam problem

Then redraw Fig. 7 as a two port diagram, similar to Fig. 8:
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Fig. 8 Two port diagram for
the beam problem

In Fig. 8 x, v are auxiliary signals.We are looking for,

Qzw(s) = Pzw(s) + Pzu(s)K(s)
(
I − Pyu(s)K(s)

)−1
Pyw(s) (5.5)

such that,

z = Qzww = F1(P,K)w (5.6)

We need to find P(s). The necessary transfer functions are,

ew = WeJx = WeJHv = WeJH(GWddw + Bu)

= WeJHGWddw + WeJHBu (5.7)

uw = Wuu (5.8)

yn = Cx + Wnnw = CHv + Wnnw = CH(GWddw + Bu) + Wnnw

= CHGWddw + CHBu + Wnnw (5.9)

Combining all these gives,
⎡
⎣uw

ew. . .
yn

⎤
⎦ =

⎡
⎢⎣

0 0
... Wu

WeJHGWd 0
... WeJHB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CHGWd Wn

... CHB

⎤
⎥⎦

⎡
⎣dw

nw. . .
u

⎤
⎦ (5.10)

or, [
z

yn

]
=

[
Pzw Pzu

Pyw Pyu

][
w

u

]
(5.11)

where,

Pzw =
[

0 0
WeJHGWd 0

]
, Pzu =

[
Wu

WeJHB

]

Pyw = [
CHGWd Wn

]
, Pyu = CHB

(5.12)

One more step is needed, however to get the Qij ’s. We do this using[
u

e

]
=

[
(I − KCHB)−1KCHG (I − KCHB)−1K

J(I − HBKC)−1HG J(I − HBKC)−1HBK

][
d

n

]
(5.13)
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and noting that,

d = Wddw, n = Wnnw, ew = Wee, uw = Wuu[
u

e

]
=

[
W−1

u uw

W−1
e ew

]
= F(s)

[
d

n

]
= F(s)

[
Wddw

Wnnw

]
⇒

[
uw

ew

]
=

[
Wu

We

]
F(s)

[
Wd

Wn

][
dw

nw

]
(5.14)

or,[
uw

ew

]
=

[
Wu(I − KCHB)−1KCHGWd Wu(I − KCHB)−1KWn

WeJ (I − HBKC)−1HGWd WeJ (I − HBKC)−1HBKWn

]

×
[

dw

nw

]
(5.15)

Let us insert the previous matrices in,

z = Qzww or

[
u

e

]
=

[
Q11 Q12
Q21 Q22

][
d

n

]
(5.16)

To express P in state space, form the natural partitioning,

P(s) =
⎡
⎣ A B1 B2

C1 D11 D12
C2 D21 D22

⎤
⎦ =

[
Pzw(s) Pzu(s)

Pyw(s) Pyu(s)

]
(5.17)

(where the packed form has been used), while the corresponding form for K is,

K(s) =
[
AK BK

CK DK

]
(5.18)

Equation (5.18) defines the equations,

ẋ(t) = Ax(t) + [
B1 B2

] [
w(t)

u(t)

]
⎡
⎣ z(t)

y(t)

⎤
⎦ =

[
C1
C2

]
x(t) +

[
D11 D12
D21 D22

] [
w(t)

u(t)

] (5.19)

and,

ẋK(t) = AKxK(t) + BKy(t) (5.20)

u(t) = CKxK(t) + DKy(t) (5.21)

To find the matrices involved, we break the feedback loop and use the relevant equa-
tions, see Fig. 9:

Fig. 9 Open loop structure
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To get the structure in state space form, relate the inputs, outputs, states and in-
put/output to the controller:

ẋF = AxF + (Gd + Bu), x = IxF

ẋu = Auxu + Buu, uw = Cuxu + Duu

ẋe = Aexe + BeJx, ew = Cexe + DeJx

ẋnw = Anwxnw + Bnwnw, n = Cnwxnw + Dnwnw

ẋdw = Adwxdw + Bdwdw, d = Cdwxdw + Ddwdw

y = Cx + n

(5.22)

Let,

x =

⎡
⎢⎢⎢⎢⎣

xF

xu

xe

xnw

xdw

⎤
⎥⎥⎥⎥⎦ , y = y, w =

[
dw

nw

]
, z =

[
uw

ew

]
, u = u (5.23)

Substituting the internal signals d,n, e and x from (5.22), yields,

⎡
⎢⎢⎢⎢⎣

ẋF

ẋu

ẋe

ẋnw

ẋdw

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

A 0 0 0 GCdw

0 Au 0 0 0
BeJ 0 Ae 0 0

0 0 0 Anw 0
0 0 0 0 Adw

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

xF

xu

xe

xnw

xdw

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

GDdw 0
0 0
0 0
0 Bnw

Bdw 0

⎤
⎥⎥⎥⎥⎦

[
dw

nw

]
+

⎡
⎢⎢⎢⎢⎣

B

Bu

0
0
0

⎤
⎥⎥⎥⎥⎦u (5.24)

[
uw

ew

]
=

[
0 Cu 0 0 0

DeJ 0 Ce 0 0

]
⎡
⎢⎢⎢⎢⎣

xF

xu

xe

xnw

xdw

⎤
⎥⎥⎥⎥⎦ + 0

[
dw

nw

]
+

[
Du

0

]
u (5.25)

y = [
C 0 0 Cnw 0

]
⎡
⎢⎢⎢⎢⎣

xF

xu

xe

xnw

xdw

⎤
⎥⎥⎥⎥⎦ + [

0 Dnw

][
dw

nw

]
+ 0u (5.26)
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Therefore the matrices are:

A1 =

⎡
⎢⎢⎢⎢⎣

A 0 0 0 GCdw

0 Au 0 0 0
BeJ 0 Ae 0 0

0 0 0 Anw 0
0 0 0 0 Adw

⎤
⎥⎥⎥⎥⎦

B1 =

⎡
⎢⎢⎢⎢⎣

GDdw 0
0 0
0 0
0 Bnw

Bdw 0

⎤
⎥⎥⎥⎥⎦ , B2 =

⎡
⎢⎢⎢⎢⎣

B

Bu

0
0
0

⎤
⎥⎥⎥⎥⎦

(5.27)

C1 =
[

0 Cu 0 0 0
DeJ 0 Ce 0 0

]
, D11 = 0, D12 =

[
Du

0

]
(5.28)

C2 = [
C 0 0 Cnw 0

]
, D21 = [

0 Dnw

]
, D22 = 0 (5.29)

As can be seen, in this configuration the size of the state vector is 16 + 4 + 4 +
4 + 8 = 36 (16 is the size of the state vector, 4 is the size of the disturbance and
of the noise and 8 is the size of the errors). This (36) will also be the size of the
controller model K(s). This number will be decreased, if some weight matrices are
constant, by their corresponding order.

6 Results for H∞ Control

In the simulations that follow the disturbance is the first mechanical load, i.e. 10 N
at the free end of the beam,

fm(t) = 10 N (6.1)

Figure 10 shows the displacement time history at all nodal points of the
beam, with and without control. Results are satisfactory, as recovery time is about
0.005 sec. We observe vibration reduction of 95 %.

Figure 11 displays the angle of rotation time history at all beam nodal points,
with and without control, using H∞, angle of rotation tends to vanish completely.

In Fig. 12 actuator voltage is plotted for all beam nodal points. Voltage lies below
500 V, witch is the piezoelectric limit.

In the simulations that follow the disturbance is the sinusoidal load

fm(t) = q0(t) (6.2)

q0(t) = 10 sin(0.01t) (6.3)

In Fig. 13 displacement time history is presented for all four nodes of the beam,
with and without control. We observe vibration reduction of 90 %. By employing
the H∞ control, vibration reduction is achieved; while the voltage applied is signif-
icantly lower that 500 V, which is the piezoelectric limit (Fig. 14).

Figure 15 shows the variation of angle of rotation for the four beam nodes, with
and without control. Using H∞, angle of rotation tends to vanish completely.
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Fig. 10 Displacement at
beam nodal points, with and
without control, for the first
mechanical loading

Fig. 11 Angle of rotation at
beam nodal points, with and
without control, for the first
mechanical loading

7 Order Reduction of Controller H∞

The H∞ controller found is order 36. The fact that controller order, which is equal
to the order of the system, is relatively higher than the order of classical controllers
such as PI and LQR has led a number of researchers to develop order reduction
algorithms. The most widely used such algorithm, known as HIFOO, has been im-
plemented in a Matlab environment, and is the one used in the following procedure
[8, 9].
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Fig. 12 Control produced
voltage at beam nodal points

Fig. 13 Displacement at
beam nodal points, with and
without control, for the
second mechanical loading

The general problem is to compute a controller of reduced order n < 36 while
retaining the performance of the H∞ criterion as well as the behaviour of a full
order controller for the given system [7, 8].

As already mentioned that, the state space equations of our system are

ẋ(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = C1x(t) + D11w(t) + D12u(t)

y(t) = C2x(t) + D21w(t) + D22u(t)

(7.1)
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Fig. 14 Control produced voltage at beam nodal points, for the second mechanical loading

Fig. 15 Angle of rotation at
beam nodal points, with and
without control, for the
second mechanical loading

and the state space equations for the controller K are

ẋK(t) = AKxK(t) + BKy(t)

u(t) = CKxK(t) + DKy(t)
(7.2)

Let α(X) be the spectral abscissa of a matrix X that is the maximum real part
of its eigenvalues. Then, we require not only that α(ACL) < 0, where ACL is the
closed-loop system matrix, but that α(Ak) < 0 as well. The feasible set of Ak , that
is the set of stable matrices, is not a convex set and has a boundary that is not smooth
[6, 10].
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The HIFOO procedure has two phases: stability and performance optimization
[9, 20]. In the stability phase, HIFOO attempts to minimize

max
(
α
(
ACL, εα(ACL)

))
(7.3)

where ε is a positive parameter that will be described shortly, until a controller is
found for which this quantity is negative, that is the controller is stable and makes
the closed-loop system stable. In case it is unable to find such a controller, HIFOO
terminates unsuccessfully.

In the performance optimization phase, HIFOO searches for a local minimizer of

f (K) =
{∞ if max(α(ACL, εα(AK))) ≥ 0

max(‖Tzw‖∞, ε‖K‖∞) otherwise
(7.4)

where

‖K‖∞ = sup
Rs=0

∥∥CK(sI − AK)−1BK + DK

∥∥
2 (7.5)

The introduction of ε is motivated by the fact that the main design objective is
to attain closed-loop system stability and to minimize ‖Tzw‖∞, by demonstrating
that ε should be relatively small; the term ε‖K‖∞, however, prevents the controller
H∞ norm from becoming too large, in which case the stability constraint by itself
would not exist. Given that it is preceded by the stability phase, the performance
optimization phase is initialized with a finite value of f (K). Consequently, when it
reaches a value of K for which f (K) = ∞, that value is rejected, since an objective
reduction is sought at each iteration [9, 20].

8 Results Using Controller HIFOO

As mentioned before, the HIFOO controller is implemented in Matlab by way of
appropriate routines. It is called in the following manner:

Kfoo = hifoo(plant,2)

where plant is the system description in the form of Eqs. (7.1), and n = 2 is con-
troller order.

The resulting controller is described in state space in similar manner as H∞, i.e.

ẋK(t) = AKxK(t) + BKy(t)

u(t) = CKxK(t) + DKy(t)
(8.1)
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Fig. 16 Beam free end displacement, with and without HIFOO control, for the first mechanical
input

The controller state space equation is given by relation (7.5), where controller ma-
trices are equal to

AK =
[

728.1 −5034
207.5 −1408

]

BK =
[

212.8 811.6
−164.9 −637.2

1716 2810
−1348 −2207

]

CK =

⎡
⎢⎢⎣

1557 −916.7
1013 −592.3

517 −297.9
144.3 −82.59

⎤
⎥⎥⎦

DK =

⎡
⎢⎢⎣

36.1 136.6 287.1 468.3
23.5 87.69 186.5 303

12.12 44.12 93.39 154.3
4.204 12.53 26.92 43.51

⎤
⎥⎥⎦

(8.2)

For the purpose of comparison of HIFOO controller performance to that of H∞,
the beam free end response is examined, for the first and third mechanical input.

For the first mechanical input, equilibrium recovery time for the free end is
0.03 sec, as shown in Fig. 16, and maximum upward displacement is 2 × 10−4,
while steady state error is 10−7. The maximum produced voltage for the control of
the end node is 30 V, as shown in Fig. 17. Using H∞ the free end restores equilib-
rium within 0.02 sec, as shown in Fig. 10, and its maximum upward displacement
is 0.3 × 10−4, while steady state error is 10−9. The maximum produced voltage is
35 V, as shown in Fig. 12. Therefore, the HIFOO controller exhibits slightly inferior
results with respect to all criteria, higher steady state error, longer equilibrium re-
covery time and larger upward displacement; however, it has lower energy demand
and lower order.
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Fig. 17 Stress at beam nodal
points, using HIFOO, for the
first mechanical input

It can be observed that by using the HIFOO controller, a reduction of system con-
troller order is achieved, while beam position is controlled with node displacements
of order of 10−7. The H∞ criterion performance is thus retained while a lower order
controller is used.

The steady state error is 3 × 10−5, while using the H∞ controller it is 0.5 × 10−5

(Fig. 16). The maximum produced voltage for the HIFOO controller is 30 V; the
respective value is 35 V for the H∞ controller [19]. In other words, beam adjustment
to its equilibrium position is achieved with a lower order controller that requires
lower voltage.

9 Conclusions

A finite element based modelling technique for the determination of the smart sys-
tem was presented. Firstly we examine the H∞ criterion. The advantage of the H∞
criterion is in its ability to take into account in the computations the worst result
of uncertain disturbances or noise in the system. It is possible to synthesize an H∞
controller which will be robust with respect to a predefined number of uncertainties
in the model. The results are very good: the oscillations were suppressed, with the
piezoelectric components’ voltages within their endurance limits.

Using nonsmooth and nonconvex optimization we reduce the order of the H∞
controller. The good performance of the controller was made even for a lower order
of the system. We reduce vibration with small recovery time and the piezoelectric
patches in their endurance limits.
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