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ABSTRACT. Fault detection, identification and monitoring plays a pri-
mary role in systems engineering. In this paper the problem of fault
detection in Model Reference Adaptively Controlled (MRAC) robotic sy-
stems is investigated. The MRAC model assures convergence to suitable
reference models for a class of processes, one of which is the mani-
pulator. However, sudden changes, modelled as faults, in the process
parameters may lead to degradation of performance and even to instabi-
1ity. Using the Discrete Square Root Filter (DSF) it is possible to
monitor the performance of the system and make the appropriate deci-
sions in the event of a failure. The whole fault monitoring scheme is
easily added to an existing MRAC system. Simulation studies in the ca-
se of faults in the manipulator®s D.C. motors compléte the paper and
demostrate the usefulness of the method.

1. INTRODUCTION

The increasing demands on reliability and safety of industrial proces-
ses and their elements lead to the development of methods for impro-
ving the supervision and monitoring as part of the overall control of
the process. This is also true for fine processes with highest demands
on reliability and safety, e.g. the robotic manipulators {1-7}.

In the next sections the elementary functions of process supervi-
sion are cosidered. The methods for faults detection are described for
the DC - motor actuators of a robotic manipulator.

A fault is to be understood here as a nonpermitted deviation of a
physical parameter from the nominal value which leads to the inability
to fulfil the intended purpose. After the effect of a fault is known,
a decison on the action to be taken can be made. If the fault is eva-
luated to be tolerable, the operation may continue and if it is condi-
tionally tolerable a change of operation has to be applied. However
if the fault is not tolerable the operation must be immediately stop-
ped and the fault eliminated.
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2. DYNAMIC MODELS FOR THE MRAC ROBOTIC MANIPULATOR

A lot of results on the control problem of robotic manipulators have
been derived and widely disseminated. Among the control algorithms de-
veloped, the so called Model Reference Adaptive Control (MRAC) approach
seems to provide a robust method for the control of processes with va-
riable parameters and/or unknown parts.

Nicosia and Tomei {l} use the complete nonlinear time varying mo-
del including all second order terms, resulting from a generalized ap-
plication of Lagrangians dynamics, to derive a robust MRAC algorithm
for the manipulator based on Popov's hyperstability theory. In their
paper the DC-motor actuators'dynamics are neglected resulting in sud-
den fractuations for the derived control torques.

Tzafestas and Stavrakakis {2} extended this original approach by
introducing the DC-moters‘dynamics with some improvement concerning the
on Tine calculation of the controller parameters. The results can be
compared with those obtained in {1}. It is easy to see that the DC-mo-
tor dynamics are taken into account for the control voltage calcula-
tion, the control voltage is smooth and easier to apply in practice
than the control torque proposed in {1}. The global dynamic model of a
3-dof (degrees of freedom) robotic manipulator is derived based on the
Lagrangian approach and the dynamic equations for the armature circuit
and the mechanics of the actuators DC-motors. These equations have the
following form (see Fig. 1): ' '
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Fig.l. Geometry of the three-1link manipulator under study.



FAULT DETECTION AND LOCATION IN ROBOTIC SYSTEMS

i

where: BT(t)=[91(t) 6,(t) 63(t~)], VT(t)=‘—V1(t) vz(t)v3(t)]
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The symbols used have the following meaning:

Ni’Kmi’Ri’Li (i=1,2,3): are the gear ratio, the DC torque constant,

the armature resistance, the armature inductan-
ce of the DC-motors, respectively.

Vs : is the armmture voltage (control input) of the
ith DC-motor

Di : is the viscous friction coefficient of the ith
DC-motor

Jmi : is the moment of inertia of the rotor of the

. ith DC-motor

qni=N191=Niwi : is the reflected shaft angular velogity

A{8) : is the (3x3) generalized inertial matrix which
is symmetric and positive definite.

re) : is the (3x1) vector of the gravitational tor-

L ques

D(8)h(B) : involves the centrifugal and the Coriolis
torques. 7

(with h(8)=vector of Gﬁéj,i=l,2,3, LIS R

i) :is the armature current of the ith joint

i
actuator

:is the reflected electromagnetic torque of

T (t)=K Nt (1)
Ty (8)=T 5 (8) =0y =P85

the ith joint actuator
:is the torque generated at the ith joint (re-
flected load of the ith DC motor)
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The MRAC algorithm which provides a robust trajectory following method
of robots using the DC-motor actuators dynamics is fully presented in
{2}.

The values of the DC-motors constants play important role for the
calculation of the control Taw at any instant. On the other hand the
correct operation of the whole robot depends strongly on the correct
operation of the DC-motor actuators i.e. on the conservation of their
physical properties (parameters) during operation.

Sudden changes of the physical parameters of the actuators which
may must, therefore, be automaticaly monitored in order to achieve a
reliable and safe operation of the manipulator.

3. FAULT MONITORING FOR THE DC-MOTOR ACTUATORS OF A ROBOT

The Model Reference Adaptive Controlled robotic system described in the
previous section must be supervised automaticaly. The first stage of
this supervision consists of the detection of changes (faults) in the
dc motor actuators based on theoretically derived motor models and pa-
rameter estimation. After the effect of the fault is known, a decision
on the action to be taken.can be made. In {3} - {7} many methods of
fault monitoring in industrial processes are reported. The generalized
structure of fault detection methods is given in Fig.2 and involves
three distinguished stages.

In many cases, the following variables can be assumed to be given:
— Measurements of the input y(tg and the output u(t) of the process.
— More or less exact a-priori information about the static and dyna-

mic behaviour of the process.

3.1. Mathematical model for the DC-motor actuator

The dynamic model for the DC-motor actuator is given ana]yfica]y in
Appendix I. Define uT(t)=[?i(t) TLi(ti], y(t)=[}1(t) wi(tzJT. Then
the model (Il) of appendix I can be formulated as a Continuous-Time

MuTti-Input Multi-OQutput (MIMO) of two (r=2) differential equations,
for the actuator of each link. That is:

y(l)(t)+A1y(l)(t)+Aoy(t)=bOU(t) (2)
. I~ =
where: Ry KniNi 1 0
L. L. L.
i, i i . i
A=OER s = ) N =
! o1 N Py o =
| ni i IniNy
R. ﬁn-N. Kn' p
I _ mi'i _ 1 . i _ " 1
Def1ne.01 o @2 e 93 > 64 S 65 . 66 "IN
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Fig. 2. Generalized structure of fault detection method.

. T 6
i.e. 8 -[e 8, 05 6, 8 96}:{
Then, if measurements of y(t) and u(t) are available equation (2)
leads to:
e(t)=yM(t)w(t)0
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0 0 (1) uy(t)

3.2. Process parameter estimation using a discrete Square-root
filter (DSF)

In this stage, measurements of the input and output signals are con-
sidered to be available at discrete times t=kTo, k=1,2,...,N with
T, the sampling time. This means, that measurements of ii(k), mi(k),
Vi(k), TLi(k)’ k=0,1,...,N are available.

In the present case of 'the 3-DOF MRAC robot these measurements
are obtained through simulation (numerical integration) of the complete
robot model (1), where the input voltage V(t) is deremmined via the
control algorithm proposed in {2} in order to follow the desired traje-
ctories.

The parameter estimation requires the first order time derivatives
of the noisy output signal y(t). These derivatives can be calculated
from the sampled measurements y(k) using numerical differentation.

- The simplest way is to replace the derivatives by the corresponding
(backward) differences. To reduce the influence of the noise interpo-
lation formulas, interpolation by third-order polynomials or Newton
interpolation can be used. For calculating higher-order derivatives
the use of state variable filtering is recommended {3}.

The Discrete Square Root Filtering (0SF) method combined with a
moving window of N samples over the data, provides a better method than
the classical RLS for the detection of parameters changes. This is due
to the numerical properties of the DSF. For details refer to Kaminski
et.al. {5}.

By observing the MIMO-1inear continuous-time system over
k=1,2,...,N samples the following discrete time set of N equations is
obtained from the continuons time system (3):

e(1)=yM(1)w()e

e(2)-y ) (2) 020 (4
L e N)=y (1) (n)-w(n)e

E)=y) () w(n)e (5)
with
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(1)
?fN)= ER2Nx6
W(N)

The méaning of the moving window of width N over the data is shown by
the following definition

E(N+i)= [eT(1'+1) eT(NH')]
(1) (1)’ ()7
YT/ (N+1)= [y (i+1) .... y (N+1)
P(i+l)
Q(N+i)= : for i=0,1,2,...
P(N+i)
The parameters @ can be estimated by minimizing the cost function V(i):
g Hol= = f
V(i)=] JE(N+T)[[" = 2 e (kle(k) for i=0,1,2,... (6)
k=1+1

Let us define
S(N+i)=[llJ(N+1') Y (n+1) ]}m and B%*= [-#-] er’
Then, the condition %6) becomes:

min V(i)=minlIS(N+i)6*||% i=0,1,2,... : (7)
) 8 :

Ther1east squares estimator of the parameter vector 8 is then given
by the well-known

éNﬂ.:[vT (N+1 )W (Ne )]‘

This equation is not recursive and the parameters are biased for any -
type of noise e(t).

The basic idea of the Discrete Square Root Filtering applied here
is as loffows:
Given:

S(N+1)0*=E (N+i)

estimation equation:

vy (P nei) 91,2, .. (8)

. . 2Nx 2N
Find an orthogonal transformation TeR such that
T(N+1‘_)S(N+1’)=l:-b—‘wfn- B7 , T(N+)TT(N+i)=1, i=0,1,2,... (9)
0 2N-7

where W(N+i) 1is upper triangular, or, equivalently, find W(N+i) and
E'(N+1)=T(N+i)E(N+i) directly.

This transformation does not change the cost function, i.e.
V(i) =[|E(N+)] | 2= [TOw ) E(N+1) | | 2= JE (N+1) | |2
From (10) it follows directly that:

(10)
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2 [[Wgo(N+i) Woe(n+i) ] [-0] 2

= (11)
0 HEE(N+i) 1

and NEEeR i.e.
Nee(N+i) WGE(N+1)

Q - Wep(N+i)

and Nee is also upper triangular.

Eq. (11) implies that:

min V(1)=min| [E; (N+1)] |2
0 6

where
-NGG(N+1)6+HGE(N+1)=0
ES(N+1) =W (N+i) (12)

Eq. (12) Teads to the following estimator of @:

8 (N1 )b (N g g (N+1) (13)
and the minimmum value of V(i) is given by NEE(N+1), i=0,1,2,....

Choosing the appropriate T may be interpreted as "compressing" the
data matrix S into the upper triangular matrix W. The triangular form

of W facilitates the computation of Néé and reduces the dimension of

the matrix to be inversed compared with eq. (8). Schmidt derived an
algorithm for constructing the transformation matrix T which is given
in Appendix II of Kaminski et al. {5}.

3.3. Calculation of the process physical coefficients

The physical process coefficients of the simulatedirobot DC-motor
actuators were selected to be:

p1=R1 p4=Jmi Vmax=12V
Py=Ly P5=P;
P3Kns N;=64

These are values in the range of the coefficients for DC-motor drives
found in the Jiterature.

The relation ship between process model parameters and physical
process coefficients p is given by:
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“
pl;é-g— (14.3)

1

By 1

ps= (14.d) and also p,=- —s— (14.e)
% N8Ry 4, Bl

GZG:
p5=— —WH14'f)
i

The case of a fault occurence into the gear box is considered as an
event w.p. 0. Under this consideration the relations (14.a) to (14.f)
hold for the physical process coefficients. However, the case of a
fault in the gear box i.e. modification of the no-fault value of the
gear ratio can be detected via the fault occurence or not in the para-
meters P3sPgsPs of the 4th stage.

The physical process coefficient vector p will be used in stage 3
of the on line fault identification method as input data.

3.4. Fault detection and identification for the robot DC-motor actuator

Fault detection and identification involves the DECISION that a fault
has occured (fault-diagnosis), the LOCALIZATION of the fault and of his
cause and the ESTIMATION of the fault size.

After calculation of the physical process coefficients p(k) in
stage 2, let us consider p(k) as a Gaussian vector with its components
statisticaly independent and its realizations p(i) and p(j) in the dif-
ferent sample instants i#j statisticaly independent. It can be consi-
dered that the mean vector p(k)=E p(k) and the covariance matrix

02(k)5E[(p(k)-u(k)) (p(k)-u(k))T] are invariant for the non-error case,
i.e.

u(k)=[ﬁ&...i€]T; const., cz(k)=diag[65,...,3§]: const.

Under these conditions the joint probahbility density function over N
samples is defined as:

N

f(p(1),...,p(N)) = ?TE f(p(i)) (15)
i=

A fault is defined by a significant deviation of the mean Wj and//or
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variance of of pi(k) — the ith component of p(k) — from the non-error
value E}, Gk.rMoreover, it is considered that only one fault may occur

at a time.
This is a classical hypothesis test problem and can be handled by
the formulation of (m+1) hypothesis Hi’ C<igm, where m=6 in the case

of the DC-motor of each robot joint actuator.

H.=

{no fault in the mean and/or the wariance of p: (i=0)
;

fault of type i (significant deviation of mean and/or variance of
pP:), Lsigm.

Each hypothesis Hi can be assosiated with a Ganssian conditional
density function, where U(Hi) and UZ(Hi) denote conditional mean and
variance for hypothesis Hi' Therefore, the non-error case is described
by u(Ho), oz(HO), whereas “(Hi)’ GZ(Hi), lgigm, describe a fault of

type 1.
When the no-fault mean and variance are not known i.e. the values
fo the parameters are not known a priori, an estimation algorithm of

u(Ho) and oZ(Ho) is needed.
The output of the fault identification stage is a fault vector:

A AEHCBRERCE] LS PE , (16)
where i represent the type of error, charactekized by Gi(Hi) and
51(“1)- The fault detection and localization is possible by computing

the Logarithmic Likelihood Ratios. The algorithm used here for estima-
ting the non-error statistics and the fault detection and localization
- is reported with details in 4 .

4. SIMULATION RESULTS

The physical process coefficients of the simulated DC-motor robo-
tic actuator are:

R=1.1Q 3,=0.00L Kgn®
L=ImH )
ﬁn=0.0224 Vsec p=0.1 kggc

These values give the a-priori knowlege of the actuator parameters
used for the calculation of the MRAC controller appled on the robot
in 2.

The simulation of the effect of a fault on the resistance R at
sample time k=105 msec on the MRAC controller performance is shown in
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fig. 8. Figures 35 show the performance of the controller and the

fault detector in the normal case. Figures 6 and 7 show the performance

of the fault detector which operates very well.
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5. APPENDIX I:

The dynamic equations for the armature circuit and the mechanics of a
d.c. motor leads to the state-space representation for the actuator of

the Tink i of the robot: - . -
F di: 1. T R, KyiN; F '
i i i . 1
T =T, “~—t—| Hi L 0 |[Vgi (V)
- i i
g = + | (Il)
‘dujci Sm . in 03 0~ -3 1N TLai(t)
i mi mi ) i mi i ]

Where Vdi is the calculated control voltage from the MRAé controller
and TLdi is the corresponding torque generated at the ith joint.

6. CONCLUDING REMARKS

The present paper constitutes a first piece of work towards the
end of applying efficient dynamic fault detection and location algo-
rithms to controlled robotic systems. Regarding the technique presented
in this paper we note the following:

— The least squares estimator is very sensitive to parameter and other
variations

— The window length is critical for false alarms and missing detectiors

— The window length should be much larger for meaningful system reor-
ganization

— The response time of the detection scheme must be minimized by using
custom hardware.
Some aspbects which are currently under study are:

— Comparision of various estimation algorithms with reference to the
fault detection and Tocation problem.

— Application of the algorithm (s) to real robotic systems.
— Consideration of the case where noise is present.
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