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In this paper, a three-stage monitoring scheme is proposed and evaluated for sensor noise degradation in discrete linear stochastic
systems. In the first stage, change detection is achieved, based on the effects that additional sensor noise has on the joint PDF of the
Kalman-Bucy filter innovations. Change identification is achieved with the aid of the steady state (following the change) innovations
covariance matrix. System reorganization is then realised on the basis of these findings. All necessary calculations are performed
recursively, thus making the whole scheme suitable for on line diagnostic systems. The proposed method is illustrated and verified
by computer simulation of a multivariable system using FAULTLAB, a fault simulation computer toolbox.

1. Introduction

The task of Change Detection and Identification (CDI) is one of the most important operations assigned
to computers supervising controlled plants. This is a direct consequence of the growing complexity of both
the plants and their controlling algorithms. CDI monitoring of system condition can help avoid degradation
of system performance, since in most cases the control law must be reconfigured to reflect the changes. For
this to be accomplished, CDI should perform the following tasks:

— change detection (alarm),

change isolation (what part of the system has changed),

change identification (size and, possibly, time of change),

system reorganization (resetting of controller and CDI parameters).

Furthermore, the above tasks should be carried out in a robust way, that is modeling errors and noise
should not trigger false alarms while the probability of correct detection should remain high. These are
usually conflicting requirements, and some sort of compromise solution is usually implemented.

Change detection ideas have been applied to many industrial areas: chemical industry [9], nuclear in-
dustry [8], aeronautics [7], leak detection in pipelines [5], vibration monitoring [3]. Moreover, CDI plays
an important part in the design of autonomous control systems [19]. Indeed, a well designed autonomous
control system must incorporate some form of low and high level fault detection subsystem. Finally, CDI, if
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properly designed, will result in improved robustness of the overall system, since unexpected destabxhzmg
changes can be detected and accounted for.

Fault detection methods fall into three main categories:

— model-based (parameter/state estimation),
— knowledge-based (expert and rule-based systems),
— artificial neural networks-based.

Each method possesses certain advantages and disadvantages, and it is also possible to combine ap-
proaches, resulting in hybrid schemes. For a presentation of these methods and their applications, con-
sult [14].

In this paper, the problem of detecting increased sensor noise in stochastic systems whose controllers
use Kalman filter estimates, is addressed. Since the optimal operation of the Kalman filter state estimator
depends on the correctness of the system parameters, it is necessary that they are constantly monitored to
check whether they remain in acceptable statistical limits, given their pre-estimated values. In particular, the
sensor noise covariance, which enters into the filter calculations, affects the state estimate error covariance
and thus if increased, produces suboptimal state estimates, i.e., estimates with larger error covariance (see
Fig. 1 for illustration). Therefore, it is important to have a sensor noise covariance change detector, if the
optimality of the Kalman filter is desired under every operating condition. The effect of jumps in observation
noise statistics on the Kalman filter estimates, is investigated in some detail for the case of power systems
control in [6].
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Fig. 1. Evolution of the state estimate error
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The proposed methodology can be applied to two other circamstances as well:

— In cases where the sensor noise covariance is unknown:and thus simultaneous state  estimation and sensor
noise covariance identification is needed. In this case, an initial estimate of the noise covariance is used
and subsequently the change monitoring scheme “detects” the correct value. '

— In cases where the sensor noise covariance is slowly changing (slower than the time needed for the
change monitoring scheme to respond). In this case the proposed methodology can be used to “track” the
time-varying covariance value.

Previous attempts for the solution of this problem have aimed only at the detection phase of the fault
monitoring process: in [11], SPR (Sequential Probability Ratio) and GLR (Generalised Likelihood Ratio)
are used for sensor noise degradation detection. Though GLR can; in:theory, ‘perform all required tasks,
no practical implementation was presented. In [18], a backward SPRT (Sequential Probability Ratio Test)
is proposed for the detection of the innovations variance changc, in cases where the change magnitude is
known.

In this paper, the approach of model-based CDI is adopted. A minor deficiency that this methodology
shares with other model-based techniques, is the need for a precise mathematical model. However, this
requirement is easily fulfilled using current model identification techniques which permit acceptable math-
ematical models to be developed for many industrial processes. Thus, in such applications, the proposed
method can greatly enhance overall system performance. Note that the term change is used, to indicate that
the relevant algorithms can be used.in cases where a change in' a system parameter is not neccssanly the
result of a fault/failure but a “normal” parameter change.

A three-stage method is proposed which is capable of performmg all the necessary tasks of a change
monitoring System in thé case of ‘additional sensor noise. ‘Using GLR' system modeling, the effect of
increased sensor noise covatiance on the joint pdf of the Kalman filter innovations is calculated.” By operating
on sliding windows of ‘innovations data, hypothesis testing on'thé innovations'variance i$ used to decide
whether a change has occurred or not. The use of sliding windows of data increases the sensitivity of the
detection mechanism. Also, recursive window relations are used for the. calculation of the necessary sample
statistics, thus making the whole procedure suitable for an on-line computerised dlagnostlc/superwsmg
system. Following a positive change decision, the estimated innovations variance is used to calculate the
new sensor noise covariance. Finally, the relevant Kalman filter and change monitoring parameters are
reinitialised to reflect the latest findings.

2. Problem statement
Following GLR fault detection-ideas [13], the monitored process is modeled as:

ok + 1) = Sa(k) + w(k), | , ok (1a)
y(k) = Hz(k) +v(k) + ((k)ow,e, g ' i (1b)

where z(k) € R™ is the state with gaussian initial condition z(0) of mean & and covariance Py, y € R? is
the observation sequence and {w(k)}, {v(k)} are independent, zero mean, white Gaussian sequences with
E{w(k)w(k)T} = Q and E{v(k)v(k)T} = R. Also the noise sequence {(k), modeling the additional sensor
noise, is conveniently defined as gaussian of zero mean and unknown constant covariance S independent
of z(0), w(i), v(i) for all 4, k. Finally oy is the step function which is unity if k > @ and zero otherwise.
In this context § models the unknown change onset time, and is infinite if no change occurs. The system
is assumed to be well behaved, i.e., umformly completely controllable and observable, ensurmg stablhty of
its Kalman filter estimator. -
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If no additional sensor noise is present, the statistical properties of the residuals are:

— Gaussian distribution, whiteness, zero mean and covariance given by,

cov {(k), ¥ (M)} = Crorm(k,m) = HP(k/k — )HT + R; k=m,

()
=0 ;i k#Em,

where P(.) is the state estimate error covariance. Furthermore, if P(.) has settled to its steady value P,
the innovations sequence is stationary.

However, if additional sensor noise exists, as shown. in [13], the covariance matrix of the innovations can
be expressed as the sum of two distinct terms:

min{k,m}

cov {’Y(k), 'Y(m)} = Cnorm(ks m) + Z G(k, z)SGT(m, ’L) (3)
=60

= Cnorm(k,m) + Cfail(kv m).

This expression shows that the covariance matrix is no longer block diagonal, indicating correlated residuals
which, however, retain their zero mean property. Furthermore, the residual sequence is not stationary. Here,
the G(k, 6) are signature matrices which can be precomputed using the recurrence relations,

F(k,0) = G(k,0)=0; k<8, (4a)
Ge.0=1, (4b)
F(k,0) = K(k)G(k,0) + ®F(k — 1,0); k>0, (4c)
G(k,0) = —H®F(k — 1,0); k>, (4d)

and K (k) is the Kalman gain.

These properties mean that the joint pdf of the innovations can be completely characterised by its first
and second moments. It is appropriate in fault detection situations to consider sliding windows of data in
order to achieve higher sensitivity and fast detection times. To ease notational complexity, the following
definitions are made for an innovations window containing n, samples at time instant k:

(T = [T G+ 1) ... 7Tk,
Ck,nd ads cov.{,yk,ﬂd,,yk,nd},

= E{,yk,nd(,yk,nd)T} € RP" xp"

where j = k —ng + 1 and p* = p x ng. Using these definitions the pdf of the windowed Gaussian vector
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vknda is, in general [13],

exp { — Jrkma)T(ChneyLyhne}

k,n _
POy | 6,5) = (2m)P*/2|Ckna|1/2

0=t exp { — $97(M)Crorm(m, m))~'4(m) }
@172 Crorm(m, m)[1/2 -

m=j

exp{ — J(yEne)T(Chney~tyine |

» m)T /2|Chne|1/2 g

where ng = (k— 6+ 1), ¢* = p X ng,

Ck’""’ _ Cg;'l‘lf’rzld—na O
B 0 Ckne +CEme |’
norm fail

C,:.,:‘Z,.m = diag [Crorm(m,m)], m=1i— j+1,...,1,

Crau(6,06) Craat(@+1,0) ...  Craa(k,0)
chmo _ Crait(@+1,0) Craa(@+1,0+1) ... Craa(k,0+1)
fail —
Crait(k,0)  oooeieiiiiinn. Ctair(k, k)

and
ckre s [p'1x [p°),
COzlma=no is  [px (0 —na+ne)l X [p X (6 — na +10)),
ckre is [px gl x [p x ne).

As seen the resulting window covariance matrix consists, in general, of two blocks. The first block is
diagonal and corresponds to the no-change period, while the second is no longer diagonal and corresponds
to change occurrence. If no change occurs, 6 is infinite and all formulae reduce to the standard ones.

3. The CDI procedure

The CDI procedure is based on the fact that an increase in the sensor noise covariance causes a predictable
change in the innovations covariance. Furthermore, this is the only effect produced, i.e., the innovations
mean remains zero. Equation (3) shows that there are two characteristics that one may test to detect additional
sensor noise: innovations variance and innovations whiteness property. Previous analysis, described in [15],
has shown that the variance detector is a much faster, reliable and simpler detector than various statistics
used to test whiteness (first order serial correlation, Kendall’s 7 etc., see for. example [10]. Therefore this
statistic is adopted. The whole procedure consists of three stages: a detection/isolation stage, an estimation
stage and a reorganization stage. This results in faster detection rates, since the data window used in the

detection stage is smaller than the one used in the estimation stage, where accuracy is important. Next, each
stage is presented in detail.
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a) Detection. In order to use clasical statistical estimation and hypothesis testing theory, the innovations
sequence must be stationary, i.e., the filter must be in steady state. In this situation,

Cnarm(k9 k) = HPHT +R= Cnorm' (6)
As mentioned earlier, moving windows of innovations data of length ny are used for the detection phase.

Therefore at each time k > k4 (k4 being the settling time of the filter), the following hypothesis tests are
_performed: '

1. Test for zero mean:

Ho: E{y(1)} =0 @)
against

Hi: E{v())} #0; i=k—-ng+1,...,k.
Starting time k4 depends on the dynamics of the system, that is on the value of the largest eigenvalue. The
statistic adopted here is the component sign test [4], which is a non-parametric test, more robust in this
case, since the innovations sequence may or may not be white. This test uses the sign statistic for each
component of the vectors and combines. them in a quadratic form. If we define,

S=(S...5,),

where
k
Si=) sgnyi(m); j=k-na+1,
m=j

and the sign function defined in the usual way as,

] 1, 2>0,
sgn(z) = { 0, z=0,
-1, 2z2<0,
then we can form,
s* = STW-1s, ®)
where
- k
Wie= > sgny(m)sgnvy(m) for1<i<pand1<£<p.
m=j ‘

The test rejects Hy (detects change) for values of $* greater than 7

2. Test for given covariance matrix, thét is,

Hy: cov {'Y(i)s ’Y("')} = Chorm
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against
Hi: cov {7(i),Y(4)} # Cnorm; i=k—-mna+1,....k.

The commonly used statistic for testing covariance equality, is the sample covariance matrix, calculated at
time instant k from a sample of size nq4 by,

k
Brne = — 2 S AN, ©

i=j

where j = k — ngq + 1. It should be noted that division by (nq — 1) in (9) instead of ng4, produces unbiased
estimates, and is therefore preferred for small window lengths appropriate for fast detection times. Also the
zero mean property has been used.

For change detection, window length and probabilities of false alarm Py, and correct detection Py, should
be specified and related. Recall that Py is the significance level of the test or its probability of type-I error,
while P; is the power of the test or the complementary probability of a type-II error. Since the tests are
different for the scalar and vector cases, they are considered separately. »

I. Scalar case: Since the sample variance is distributed as a x? variable with ng — 1 degrees of freedom,
the equations relating Py, Py and nq are the following [10]:

(ng — 1)k

Cnorm

Pi= PP, 1 < Mu-tipy/2) + PlXaum > M, —1:1-p, /2] 1)

2 2
Xna—1:P;/2 < < Xng-1;1-P; /20 (10)

where A = Cnorm/é%™ and X2, denotes the 100 percentage point of the x2 distribution with n degrees of
freedom, i.e.,

a= P[x2 > xfm].

There are two equations but four design parameters and therefore specifying Py, FPq and )\ may not yield an
acceptable ng (too large). In this case a tradeoff between fast detection (small ng) and high P, (large ng) is
made. The parameter A deserves some notice. As expected, Py is a function of the alternative hypothesis,
namely the value of the unknown ). It measures, in a sense, the amount of degradation that we want to allow
before the change monitoring system triggers and should be set bearing in mind reliability specifications for
the whole system. Having set the detection parameters, the detection rule becomes:

If,

ghna > %(Xid—l;m/z) : change at time tfqq = k — ng + ta,
otherwise, : process in control,

where t, is the detection delay time. Even though the change time 6 is not explicitly determined, one can
safely approximate its value with the change alarm time instant ts4q. The detection delay time tg is the
number of samples containing change information that have to be processed for the change alarm to trigger.
This will in general be a function of change size but a good approximation will be half the detection window
size. Simulation studies may yield more accurate values. If improved reliability is required, the change
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alarm could be delayed until a number of n, consequent changes are detected. In this case, however, since
sliding windows are used, the probability of a false alarm is not P¢ but higher.

II. Multivariable case: In this case a scalar statistic obtained from maximum likelihood principles is,
W* = (na — D{ = p = In(|C*™)) + In|Cporm| + tr (C 1, C¥")}.

In (Anderson, 1984) it is shown that W* is asymptotically distributed as x? with p(p + 1)/2 degrees of
freedom. For small samples, the scaled statistic,

i 1 ( 2 ) .
=41— — - AW
w {l & =) 2p+1 o

is suggested in [2]. Since the distribution of either statistic is x2, the selection of design parameters and
decision rule are similar to the scalar case.

b) Estimation. Following a positive change decision, the estimation stage is entered. At this stage, use is
made of the asymptotic properties of the filter and additional sensor noise effects. In particular, investigation
of the steady state value of the diagonal elements of C’}‘;’Z;’, i.e., when k >> 6 is necessary. As shown in
Appendix 1, Cyqa(k, k) converges to a steady state value Cfait, assuming the system is well behaved. This
value satisfies,

Ctait = HOZ(H®)T + S, (12)

Y=(I-KH®Z[(I - KH)?" + KSKT. (13)

These two equations must be solved simultaneously to obtain Cj,;. To do this, pre- and post multiply (12)
by K and KT, respectively, to get,

KSKT = KCoyKT — KHOY(K H®)T (14)
and by substituting (14) into (13) gives,
Y=I-KH)®Z[(I-KH)®)" + KCfuK" - KH®S(KH®)T. 15)
Furthermore, by (3)
* Crait = coV {7(k), Y(k)} ~ Crorm
and by substituting into (12) and (15) yields,
S = cov [y(k), ¥(k)] = Crorm — H®Z(H®)T, (16a)

L= -KHZ[I - KH)®]" + K[cov {v(k),Y(k)} — Crorm]KT — KHSS(K H®)". (16b)

In order to solve (16a)—(16b) the residual covariance, cov {~(k),v(k)}, has to be substituted by its estimate
Ckne, This is calculated once from a sample of size n. at time instant k = trail + ne using (9) as,

1

akyne s
e — 1

k
> TG,

=3
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where j = k — n. + 1. Note that for estimation we use a different window, n., usually larger than ng4 since

good estimates are desired. This issue is explained in more detail later. Hence, the system to be solved for
S is,

S = CFme — Crorm — HOZ(H®)T,

- a7
I =-KH®Z[I- KH)®T + K(C*™ — Cprorm)KT — KHSZ(KHP).

This is an algebraic equation in the elements of ¥, which can be solved directly for its distinct n(n + 1)/2
elements. Let, :

o =[011012...010021 ---02n - - . Onnl

be the vector of the unknown elements of X. Then, as shown in Appendix 2,

o=I-T)1, (18)
11 12
th 4ty .- HT
11 12
o |2 h2 - 12
Bl g o I

l=[ln liz .. bp b1 ... bn ... lanl,

n n
t,-zjy = PjyPiz — Piz ij.k‘Pk,y = Py Zmi,k‘Pk,m
k=1 k=1
L = K(C*" — Cuorm)K™,
M=KH

(suffices denote respective matrix elements). ‘

Plugging X into (17a), produces the desired estimate for S. In particular, if the system is scalar, its solution
is,

 codims (npk)? &
s=(¢ == Cnorm)<1 - i kn)cp]z — 1) .

In the same manner, it is straightforward to deduce similar results for the cross-correlations of the resisuals.
Specifically, it may be proved that they, too, converge to steady state values, and further that the correlation
decreases to zero as time lag increases. However, for the purpose of this work, these results are not needed,
and are therefore omitted for the sake of simplicity.

As mentioned before, since good estimation of the additional noise covariance depends on the sample
innovations covariance calculated using (9), the estimation data window n. should be chosen large enough
for a prespecified accuracy. One should also bear in mind that the window in question should only contain
samples which carry information on the change. Consequently, sample count for the window should start
after the change alarm. An additional source of error is the fact that following a change detection, the
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innovations are now correlated resulting in the need for a larger sample than if independence existed. In
particular, for scalar processes, it is known that [16],

2((:1;:,n¢ )4 %

Ak,n 2

var{é®met ~ —— = m).

fghm) ~ m;mp (m)

The usefulness of this expression lies in the fact that even though the true variance c*" and correlations
p(m) are not known exactly, the accuracy is seen to be O(1/n.) and directly proportional to the degree of
total correlation.

c) System reorganization. Following the estimation stage, two types of corrections to the monitoring
system must be made. Firstly, appropriate changes are effected in the Kalman filter equations. The sensor
noise covariance matrix R used in (2) must be changed to its newly estimated value given by,

R(new) = R(old) + S

and since the state estimate, which has been calculated using the wrong R, is not optimal, the state error
covariance matrix P should be modified to reflect this fact. A possible approach is to set,

P(new) = P,.

Secondly, change decision thresholds appearing in (16), (17) must be updated to reflect the new &. The
new thresholds are calculated after the filter, with its updated parameters, has settled again.

4. Implementation issues

The overall CDI procedure is implemented by the following algorithm:

Step 1. Initialization: specify Py, Pf, A, n.; determine Chorm, K, ng, kq off-line.

Step 2. Detection: for k > kq process a window of ny Kalman filter innovations, and calculate the component
sign statistic and the residual sample covariance. If Hy is true, slide the window and repeat Step 2,
otherwise go to Step 3.

Step 3. Estimation: Process the next n. samples of the innovations and calculate the new sensor noise
covariance matrix R, while disabling the detection mechanism.

Step 4. Reorganisation: Reset R, P. Recalculate Crorm, K, k4. Reset k to 0 and go to Step 1.

As far as on-line applications are concerned, care should be exercised regarding the speed and accuracy
of the necessary calculations which are to be performed on-line. In [14] it is shown that for a scalar system,
the sample window variance can be calculated recursively using,

. S 1
Ak = 4k=1 — —§(k), (19)
ng
Fodiy b (z«sac)&'“-l o G PR s ) ﬂk)), 20)
Nd—1 ng
where

(k) = v(k — nq) — v(k).

The same formulae can be applied to the elements of the vector processes.
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5. Simulation results

The proposed change monitoring methods were tested on the fifth order system,

075 —-174 —03 0 —0.15 26 0 0 0 0
009 091 —00015 0 —0.008 0 08 0 00
sk+1)=|0 0 095 0 0 |zk)+| 0 0 1.8 0 0]wk)
0 0 0 05 0 0 0 0 00
0 0 0 0 0905 0 0 0 00
10001
y(k)z[o 101 o]'

The whole simulation was performed using FAULTLAB, a fault simulation toolbox described in [17].

On this system additional noise of variance S = diag [6 6] was applied at ¢t = 50. In Figs 14, the results
of a single test run are shown.

In Fig. 1, the performance of the whole system in terms of the state estimate error is shown. The state
estimate errors for all five states are shown, together with their theoretical and sample 3o limits. It is seen
that before system reorganization, state estimates fall outside their expected limits, while sample limits are
much larger than theoretical ones. After system reorganisation (roughly at ¢ = 390), the situation is reversed.

Sign test (window width: 50)
1" =

10 —

Sign function
[=2]
]

Fig. 2. Behaviour of the sign statistic fault detector
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statistic

Sample window test statistic (width: 50)

P

5

R

e
0

Fig. 3. Variance detection statistic

variance 11

Add. sensor noise detected at t: 67 from 350 points as 5.983543

time

variance 22

-2.00

8.00 —
6.00 —
4.00 —
2.00 —

0.00 —

Add. sensor noise detected at t 67 from 350 points as 6.396339

g oI e T e e St
St

§J

Fig. 4. Estimation of additional sensor noise variance
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In Figs 2 and 3 the behavior of the test statistics is shown. Clearly the sign statistic remains within
bounds (does not trigger) before and after reorganisation, while the variance test triggers shortly after the
fault occurrence (¢ = 75) while it resettles within bounds after system reorganisation. Detection window
width was set at ng = 50.

In Fig. 4 the performance of the estimator is shown. Estimation window was set at n. = 350. Both
elements of the additional noise covariance are estimated sufficiently clode as 5.98 and 6.4, respectively,
thus confirming the applicability of the proposed algorithms.

6. Conclusions

In this paper, an efficient method for the on-line detection of additional sensor noise is presented. In
situations where accuracy of incoming information should be maintained at optimum levels, this diagnostic
system should prove very valuable. By exploiting the nature of the Kalman filter’s innovations behaviour
operating in steady state in the event of increased sensor noise and by processing sliding windows of
measurements, additional noise is detected, if present, and its variance estimated. Following a change
detection, the model is reorganised for optimum performance. All the design parameters can be tuned to
reflect desired characteristics. The feasibility of the proposed method is illustrated via a computer simulation
of a multivariable system.

Appendix 1
Substituting (4d) into (4c) gives for k > 6,

F(k,0) = —KH®F(k — 1,0) + F(k — 1,6)
= (I - KH)Y®F(k — 1,6)
k
= [Ju - KH)F,9)
6+1
and since by (4¢c), F(0,6) = K, it follows that,
F(k,0)={(I - KH)?}*°K; k>0.
Hence, using (4d),
G(k,0) = —H®{(I - KH)®}*°~'K; k>0, (A1)
G@6,6) = I. (4b)
Substituting (A1) and (4b) into (3) gives,

k-1 )
Crailk, k) = Hdi(z {1 - KH@} ' KSK™{{U - KH)qs}k-i}T) (H®)' + S
1=0

k-1
=Y ( > Wk-*Z(Wk—*')T> YT +8,
i=0
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where

Y=H®, Z=KSK', W=(UI-KH?®.
Without loss of generality, let § = 0. Then,

Crait(k, k) = Y{W*=1Z(W* )T L WE=2Z(w 2T 4 ... L 23¥T 4 g,

Now, consider the inner matrix sum,

Te1 = WEIZWE-WT L whk=2Zzwk-2)T L ... L 7
= W{Wk—ZZ(Wk—Z)T i Wk-—BZ(Wk-f!)T gl Z}WT +Z
=WZ W + 2.

This is a matrix difference equation in £, which has a finite limit X, satisfying,
Do =WEQWT + 2

since W = (I — KH)® is a stable matrix [12].
Hence, dropping the infinity subscripts, and substituting the appropriate matrices,

Cfait = HOZ(H®)T + S,
Y= -KH®Z[I-KH" + KSKT.

Appendix 2
The system to be solved for S is,

S =C*" — Cpopm — HOS(H®)T, (17a)
2= ~-KHoZ[(I - KH)P|" + K(CF" — Cporm)KT — KHOE(K HE)". (17b)

Let us first solve for X the second of the above equations. Letting,
My = K(C*™ - Cropm)KT,
M, =KH
and performing the operations, (17b) becomes,
2 =030" - LM} — M3 ST + M;. (A2)

Now, examine each term of (A2). For matrix #2587 the element @,7) is, aftér'carrying out the matrix
multiplications,

(PXPT); ; = Z (Z%,me,k) “Qjk- (A3)

k=1 ‘=1
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Consequently, the element (i, j) of (PXST)M] is,

(@ze"M3),,; = Y (8297),,(M7),
k=1

_ Xn: ( z": (lz::l(p.-,a,_m> -wk,m) (M3), ;-

k=1 \m=1

Transposing (A4), yields for M,@E®T,
n n n
(M8Z )i =Y (Ma)ik ( > (Z ‘Pk,to'l,m) ‘Pj,m) .
k=1 m=1 \ =1

Hence, the RHS of (A2) becomes,

(@EST — SXETM] — My®LST + My);;

n

n n n n
> ( > <Pi,lal,m) Cim— . Y, ( > ‘Pi,ta'l,m) Pk,m(M2)j,k—
=1 k=1

I

m=1 m=1 */{=1
n n n i
D3 UHTDY (Z ‘Pk,ta'l,m> @jm + (M1)ij
k=1 m=1 \ =1
n n n n n
= Z Pjm (z (Pi,ta't,m) - E(MZ)j,k Z Pk,m (Z w.zaz,m) =
m=1 =1 k=1 m=1 =1

~ )ik Y pim (Z sok,m,m) + (My)s 5.
k=1 m=1 =1

269

(A4)

(A5)

(A6)

Equating this with its LHS, produces a set of simultaneous equations for the elements of o. Thus the next
step is to find the coefficients of each o;; of (A6). Expanding each term in'(A6) and collecting terms of

same index, produces:

(58T — $TSTM] — Mp@Z ST + My)ij = 03

n n
=01, [%‘,1%,1 —@in ) (M) Pk~ Pi1 Z(MZ)i,k‘Ph;l] +
k=1 k=1

n n
+ 02,1 [%,190:'.2 — iz >_(Ma); k1 — il E(MZ)i,k‘Pk.Z] +
k=1 k=1

e+ (M)

Writing (A7) in vector-matrix form produces the desired result:

c=To+m =o=~0-T)"'m,

(A7)
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where

o =[011012...010021 . ..0nn],

my = [(M1)1 (M2 - .. (M1)in (Mi)a1 -.. (Mp)pnl,

11 12 nn

tll tll te 11

11 12 nn

T = t12 t12 A € 12
11 12 n

bnn. ths e o0

and
n n
t5 = CinPic = Piz Y (M2)jkPry — Piy > (Ma)i ks
k=1 k=1
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