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Abstract— this paper develops a robust active control approach 

with parametric uncertainties in smart structures. Large 

amplitudes and attenuating vibration periods result in fatigue, 

instability, and poor structural performance. In light of past 

research in this field, this paper intends to discuss some innovative 

approaches in vibration control of smart structures, particularly 

in the case of structures with embedded piezoelectric materials. 

More advanced theories for control strategies are presented, such 

as robust control theory and uncertainty modeling. The resulting 

approach to robust control may be applied for the analysis and 

design of practical smart structures. 

 
Index Terms—D_K iterative method, H∞performance, 

Robust active control, Smart structures, Uncertain structural 

systems.  

I. INTRODUCTION 

Slender structures and long bridges that inherit numerous 

uncertainties due to model errors, simplified assumptions in 

stress calculations, material properties, and load 

environments, may undergo large forces from natural hazards 

such as earthquakes and strong wind events. The robust 

control method provides robust relative stability, the H∞ 

norm of the transfer function from the external disturbance 

forces (e.g., earthquake, wind, etc.) to the observed smart 

structures states is restricted by a prescribed attenuation 

index. The smart structures have broadly motivated research 

interest during the last decades [1]-[10]. A smart structure 

would be able to sense the vibration and generate a controlled 

actuation so that the vibration can be minimized [1]. The 

stimulus to a structure may originate from external 

disturbances e.g., earthquake, wind, or excitations that cause 

good broadband sensing and actuation properties [1]. The 

ability of piezoelectric materials to exchange electrical and 

mechanical energy opens up the possibility of employing 

them as actuators and sensors. If the piezoelectric materials 

are bonded properly to a structure, structural deformations 

can be induced by applying a voltage to the materials, 

employing them as actuators. On the other hand, they can be 

employed as sensors since deformations of a structure would 

cause the deformed. piezoelectric materials produce an 

electric charge [6], [7]. The extent of structural deformation 

can be observed by measuring the electrical voltage that the 

materials produce [9], [10]. A short literature review gives a 

deep insight into the research work done on the intelligent 

structures so far. Culshaw [11] discussed the concept of smart 

structure, its benefits and applications. Rao and Sunar 

explained the use of piezo materials as sensors and actuators 

in sensing vibrations in their survey paper [12]. Hubbard and 

Baily [13] have studied the application of piezoelectric 

materials as sensor / actuator for flexible structures. Hanagud 

et.al. [14] developed a Finite Element Model (FEM) for a 

beam with many distributed piezoceramic sensors / actuators. 

Hwang and Park [15] presented a new finite element (FE) 

modeling technique for flexible beams. Continuous time and 

discrete time algorithms were proposed to control a thin 

piezoelectric structure by Bona, et.al. [16]. Schiehlen and 

Schonerstedt [17] reported the optimal control designs for the 

first few vibration modes of a cantilever beam using 

piezoelectric sensors / actuators. S.B. Choi et.al. [18] have 

shown a design of position tracking sliding mode control for a 

smart structure. Distributed controllers for flexible structures 

can be seen in Forouza Pourki [19]. A FEM approach was 

used by Benjeddou et.al. [20] to model a sandwich beam with 

shear and extension piezoelectric elements. The finite element 

model employed the displacement field of Zhang and Sun 

[21]. It was shown that the finite element results agree quite 

well with the analytical results. Raja et.al. [22] extended the 

finite element model of Benjeddou‟s research team to include 

a vibration control scheme. In this paper we introduce 

uncertainties in smart structures. The control system aims at 

suppressing undesirable ones and/or enhancing desirable 

effects. We study an example of such a structure: an 

intelligent beam with integrated piezoelectric actuators, the 

goal of which is to suppress oscillations under stochastic 

loads. First we examine the H∞ criterion which takes into 

account the worst case scenario of uncertain disturbances or 

noise in the system. Therefore, it is possible to synthesize a H

∞ controller which will be robust with respect to a predefined 

number of uncertainties in the model. By using uncertainties 

one may take into account non-linearity of the structure, 

damage or other changes from the nominal model, and, 

subsequently, analyse and design a robust-controller. The 

results are very good: the oscillations were suppressed even 

for a real Aeolian-type load, with the voltages of the 

piezoelectric components laying within their endurance 

limits.  

II. MATHEMATICAL MODELING 

A cantilever slender beam with rectangular cross-sections 

is considered. Four pairs of piezoelectric patches are 

embedded symmetrically at the top and the bottom surfaces of 

the beam, as shown in Fig. 1.  

Advances on Robust Control of Civil 

Engineering Smart Structures 
Amalia J. Moutsopoulou, Georgios E. Stavroulakis, Anastasios Pouliezos 



                                                       
   

 

ISSN: 2277-3754   

ISO 9001:2008 Certified 
International Journal of Engineering and Innovative Technology (IJEIT) 

Volume 3, Issue 3, September 2013 

 

 

118 

 
Fig.1 Smart Beam 

The beam is from graphite- epoxy T300 − 976 and the 

piezoelectric patches are PZT G1195N. The top patches act 

like sensors and the bottom like actuators. The resulting 

composite beam is modeled by means of the classical 

laminated technical theory of bending. Let us assume that the 

mechanical properties of both the piezoelectric material and 

the host beam are independent in time. The thermal effects are 

considered to be negligible as well [8]. The beam has length L, 

width W and thickness h. The sensors and the actuators have 

width bS and ba and thickness hS and ha, respectively. The 

electromechanical parameters of the beam of interest are 

given in the table 1. 

 

TABLE 1: PARAMETERS OF THE COMPOSITE BEAM. 

Parameters Values 

Beam length, L 0.3 m 

Beam width, W 0.04 m 

Beam thickness, h 0.0096 m 

Beam density, ρ 1600 kg/m3 

Youngs modulus of the beam, E 1.5 Χ 1011 N/m2 

Piezoelectric constant, d31 254 Χ 10−12 m/V 

Electric constant, ξ33  11.5 Χ 10−3 V m/N 

Young‟s modulus of the piezoelectric 

element 

1.5 Χ 1011 N/m2 

Width of the piezoelectric element bS= ba= 0.04 m 

Thickness of the piezoelectric element hS= ha= 0.0002 m 

 

In order to derive the basic equations for piezoelectric 

sensors and actuators [1], we assume that: 

• The piezoelectric sensors actuators (S/A) are bonded 

perfectly on the host beam; 

• The piezoelectric layers are much thinner then the host 

beam; 

• The piezoelectric material is homogeneous, transversely 

isotropic and linearly elastic; 

• The piezoelectric sensors actuators (S/A) are 

transversely polarized [1]. 

 
Fig. 2: Beam finite element 

A. Finite Element Formulation  

We consider a beam element of length Le, which has two 

mechanical degrees of freedom at each node: one translational 

ω1 (respectively ω2) in direction z and one rotational φ1 

(respectively φ2), as it is shown in Fig. 2. The vector of nodal 

displacements and rotations qe is defined as [23], 

 1 1 2 2, , ,r

eq      (1) 

The beam element transverse deflection ω(x,t) and the 

beam element rotation ψ(x, t) of the beam are continuous and 

they are interpolated within by Hermitian linear shape 

functions 
iH  and 

iH as follows [11], 

4
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This classical finite element procedure leads to the 

approximate discretized variational problem. For a finite 

element the discrete differential equations are obtained by 

substituting the discretized expressions 12 into the first 

variation of the kinetic energy and strain energy [5], [6] to 

evaluate the kinetic and strain energies. Integrating over 

spatial domains and using the Hamiltons principle [5], the 

equation of motion for a beam element are expressed in terms 

of nodal variable q as follows, 

( ) ( ) ( ) ( ) ( )m eMq t Dq t Kq t f t f t       (3) 

where M is the generalized mass matrix, D the viscous 

damping matrix, K the generalized stiffness matrix, mf the 

external loading vector and ef  the generalized control force 

vector produced by electromechanical coupling effects. The 

independent variable q(t) is composed of transversal 

deflections  
1  and rotations  

1 , i.e., [6] 

1

1

( )

n

n

q t









 
 
 
 
 
 
 
 

   (4) 

Where n is the number of nodes used in analysis. Vectors ω 

and  mf  are positive upwards. To transform to state-space 

control representation, let (in the usual manner),  
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q t
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 (5) 

Furthermore to express ( )ef t  as ( )Bu t we write it as *

ef u  

where *

ef the piezoelectric force is for a unit applied on the 

corresponding actuator, and u represents the voltages on the 

actuators. Furthermore, ( ) ( )md t f t  is the disturbance 

vector [6], the control vector u(t) and the  disturbance vector 

d(t) are the inputs of our system. 

Then, 

2 22 2 2 2 2 2

1 *1 1 1
( ) ( ) ( )

n nn n n n n n

e

OO I O
x t x t u t

M fM K M D M
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 
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( ) ( ) ( ) ( ) ( ) ( )
( )

u t
Ax t Bu t Gd t Ax t B G Ax t Bu t

d t

 
       

 

 

 

The previous description of the dynamical system will be 

augmented with the output equation (displacements only 

measured) [5], 

( ) ( )y t Cx t   (7) 

In this formulation u is n x 1 (at most, but can be smaller), 

while d is 2n x 1. The units used are compatible for instance 

m, rad, sec and N. 

III. DESIGN OBJECTIVES AND SYSTEM 

SPECIFICATIONS 

The structured singular value of a transfer function matrix 

is defined as, 

1

min{det( Δ) 0, (Δ) 1}( )

0,if no such structured exists

m
m

k
I k MM 


    



  (8) 

In words it defines the smallest structured Δ (measured in 

terms of (Δ) ) which makes det(I−MΔ)=0: then  

( ) 1/ (Δ)   .  It follows that values of μ smaller than 1 

are desired (the smaller the better: a larger variation is 

allowed) [8], [24]. 

A. Design Objectives 

Design objectives fall into two categories: 

1. Stability of closed loop system (plant+controller). 

Nominal performance 

2. Disturbance attenuation with satisfactory transient 

characteristics (overshoot, settling time). 

3. Small control effort. 

Robust performance 

4. (1)-(3) above should be satisfied in the face of 

modeling errors. 

B. System specifications 

To obtain the required system specifications to meet the 

above objectives we need to represent our system in the 

so-called (N, Δ) structure.  To do this start with the simple 

typical diagram of Fig. 3. 

 

P C 

u 
d 

y 
n 

r=0  
x 

 
Fig. 3 Classical control block diagram 

In this diagram there are two inputs, d (disturbances) and n 

(noise), and two outputs, u (control vector) and x (the state 

vector).  In what follows it is assumed that, 

2 2

1, 1
d u

n x
    (10) 

If that‟s not the case, appropriate frequency-dependent 

weights can transform original signals so that the transformed 

signals have this property. 

Rewrite Fig. 3 like Fig.4: 
 

K 

P 

d  

u  

z  

w  

P  

x  

n  

y  

  
Fig. 4 detailed two-port diagramor in less detail, 

 

Κ 

P 

z w 

u 

y 

 
Fig. 5 Two-port diagram 

with, 

,
u d

z w
x n

   
    
   

  (11) 

Where z are the output variables to be controlled, and w the 

exogenous inputs, P is our system and K is the controller. Fig. 

5 and Fig. 6 represent our problem in the state-space form. 

Given that P has two inputs and two outputs it is, as usual, 

naturally partitioned as, 
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ορ( ) ( )( ) ( ) ( )
( )

( ) ( )( ) ( ) ( )

zw zu

yw yu

P s P sz s w s w s
P s

P s P sy s u s u s

      
       

      
  (12) 

Also, 

   u(s)=K(s)y(s)   (13) 

The closed loop transfer function Nzw(s) is defined by, 

Nzw(s)=Pzw(s)+Pzu(s)K(s)(I−Pyu(s)K(s))−1Pyw(s)  (14) 

To deduce robustness specifications a further diagram is 

needed, namely that of Fig.6: 

 

N z w 

Δ p q 

 
Fig. 6  N-Δ structure for uncertainty modeling 

 

where N is defined by (14) and uncertainty modeled in Δ 

satisfies ║Δ║∞≤1 (details later).  Here, 

z= u(N, Δ)w=[N22+N21Δ(I−N11Δ)
−1

N12]w=Fw  (15) 

Given this structure we can state the following definitions: 

Nominal stability (NS)  N internally stable 

Nominal performance (NP) 

 

║N22(jω)║∞<1,  ω and NS 

Robust stability (RS)   F= u(N, Δ) stable Δ, ║Δ║∞<1 

and  NS 

Robust performance (RP) 

  

║F║∞<1, Δ, ║Δ║∞<1 and NS 

 

It has been proved that the following conditions hold in the 

case of block-diagonal real or complex perturbations Δ: 

 

Ι. The system is nominally stable if M is internally 

stable. 

II. The system exhibits nominal performance if    

III The system (Μ, Δ) is  robustly stable  if  and only if, 

 Δ 11sup ( j ) 1N


 





  (16) 

where μΔ is the structured singular value of N given the 

structured uncertainty set Δ.  This condition is known as the 

generalized small gain theorem. 

IV The system (N, Δ) exhibits robust performance if and 

only if, 

 Δsup ( j ) 1
a

N


 





  (17) 

where, 











Δ0

0Δ
Δ

p

a   (18) 

and Δp is full complex, has the same structure as Δ and 

dimensions corresponding to (w, z). 

Unfortunately, only bounds on μ can be estimated.  

C. Controller synthesis 

All the above answer the analysis problem and provide 

tools to judge the performance of any controller and also 

compare controllers.  However it is possible to approximately 

synthesize a controller that achieves given performance in 

terms of the structured singular value μ.   

In this procedure known as (D, G-K) iteration [3[, [24], the 

problem of finding a μ-optimal controller Κ such that  

μ( u  (F(jω),  Κ(jω))≤β,  ω, is transformed into the 

problem of finding transfer function matrices D(ω)  and 

G(ω),  such that, 

 
 

1
2

1

2
( )( ( ), ( ) ( )

sup j ( ) ( ) 1,
uD F j j D

G G


   
   




  

       
   

F

 (19) 

Unfortunately this method does not guarantee even finding 

local maxima [25].  It combines H∞ synthesis and μ-analysis 

and often yields good results.  The starting point is an upper 

bound on μ in terms of the scaled singular value, 
1( ) min ( )

D
N DND  




D
  (20) 

The idea is to find the controller that minimizes the peak 

over frequency of its upper bound, namely, 

 1min min ( )
K D

DN K D

D
  (21) 

by alternating between minimizing  1( )DN K D


 with 

respect to either K or D (while holding the other fixed). 

 

1. K-step.  Synthesize an H∞  controller for the scaled 

problem  1min ( )
K

DN K D


 with fixed D(s). 

2. D-step.  Find D(jω) to minimize at each frequency  
1( ( j ))DND   with fixed N. 

3. Fit the magnitude of each element of D(jω) to a stable 

and minimum phase transfer function D(s) and got to Step 1. 

D. System uncertainty 

The main sources of uncertainty are: 

* Nonlinearity and/or dynamic aspects of the system that 

are ignored at the modeling phase. The error introduced in 

modal analysis by using only a few significant eigenmodes 

leads to an uncertainty of the type discussed here. 

* Incomplete knowledge of model values and parameters 

and/or natural fluctuation of those values during system 

operation. 
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* Influence of the system's environment, in the form of 

disturbances. 

Assume uncertainty in the M  and K matrices of the form, 

 

0 2 2( )p n n KK K I k I     (22) 

0 2 2( )p n n MM M I m I      (23) 

 

Also, since, D=0.0005(K+M), an appropriate form for D is, 

 

0 2 2 0 2 2[ ( ) ( )]0.0005 p n n K p n n MD K I k I M I m I        

0 0 2 2 0 2 2[5 ]0.000 p n n K p n n MD K k I M m I     (24) 

Alternatively, by adopting the well-known Rayleigh damping 

assumption, 

D K M     (25) 

D could be expressed similarly to K, M, as, 

0 2 2( )p n n DD D I d I     (26) 

In this way we introduce uncertainty in the form of 

percentage variation in the relevant matrices.  Uncertainty is 

most likely to arise from terms outside the main matrices 

(since length can be adequately measured). 

Here it will be assumed, 

 ║Δ║∞


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


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
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

nnnn

nnnn

0

0def

 <1  (27) 

hence mp, kp are used to scale the percentage value and the 

zero subscript denotes nominal values. 

(it is reminded that for matrix Αn×m the norm is calculated 

through ║A║∞= 




n

j

ij
mj

a
1

1
max  ) 

With these definitions (3) becomes, 
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Writing  in state space form, gives, 
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2( ) ( ) ( ) ( )u uΑx t Βu t Gd t G G q t     (33) 

 In this way we treat uncertainty in the original matrices as 

an extra uncertainty term. 

To express our system in the form of Fig. 6, consider in the 

frequency domain Fig. 7. 
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Fig. 7   Uncertainty block diagram 

This diagram is the weighted block diagram in the 

frequency domain. Wd, We, Wu, Wn are the weight of the 

disturbances, errors, control, noise. H(s) is our system, K(s), is 

the controller and Δ define the uncertainties.  

The matrices E1, E2 are used to extract, 
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appropriate choices for E1, E2 are, 
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The idea is to find an N such that, 
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or in the notation of Fig. 6,  
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  (38) 

We‟ll use a methodology known as “pulling out the Δ‟s”.  
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To this end, break the loop at points pu, qu (which will be used 

as additional inputs/outputs respectively) and use the 

auxiliary signals α, β and γ. 

To get the transfer function 
uwqd

N  (from dw to qu): 

2 2 1 2 2 1( ) ( )uq G E G E       (39) 

d w d wGW d Bu A GW d BKC A          

1( ) d wBKC A GW d      (40) 

Hence, 

1

2 2 1

1
( )(

1 1
)

w ud q dN G E BKC A GW
s ss

      

Now, 
u up qN  , 

u wp eN  , 
u wp uN  ,  are similar to  

w ud qN , 
w wd eN , 

w wd uN  with GWd replaced by Gu, i.e., 

1

2 2 1

1
( )(

1 1
)

u up q uN G E BKC A G
ss s

      

1[ [ ( ) ]
u wp e y uN W JH I B K I CHBK CH G    (41) 

1( )
u wp u u uM W K I CHBK CHG   

 

Finally to find 
uwqnN  , 

2 2 1 2 2 1

1
( ) (  )u

s
q G E G E       (42) 

 
1 1 1 1

n w n wBu A BK W n y A BKW n BKC A
s s s s

           

1( )
1 1

n wBKC A W n
s s

        (43) 

Hence, 

1

2 2 1( )(
1

)
1 1

w un q nN G E BKC A W
s s s

       (44) 

Collecting all the above yields N: 
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 (45) 

Having obtained N for the beam problem, all proposed 

controllers K(s) can be compared using the structured singular 

value relations. 

IV. ROBUSTNESS ISSUES 

Methods for the design of robust control laws that take into 

account non-parametric and unstructured uncertainty take 

advantage of the properties of the H∞ norm, and constitute 

what is known as the H∞ [26], [27], [28] approximation. A 

considerable volume of research has been dedicated to this 

since the beginning of the 1980s, the first being Zames [29], 

where the minimization of the H∞ norm of the sensitivity 

function of a linear closed system is used. In this way, robust 

stabilization and disturbance rejection problems are solved 

[26], even in the time domain [30]. The H∞ approximation is 

based on the small-gain theorem. Its goal is to find a stabilizer 

K that stabilizes system P and satisfies the small-gain 

condition, which is expressed as the value of the H∞ norm of 

the transfer Tzw between output z and extrinsic input w [9], 

[10]. The main problem is stated as follows: Find a class of 

stabilizers that ensure internal stability of the closed system 

and satisfy the condition Tzw 

 , where γ is a given 

positive scalar quantity. This problem is suboptimal, because 

what is sought is not to minimize the H∞ norm of transfer 

function Tzw, but to attain a value below a given γ. To solve 

this problem, the usual approach involves parametrization of 

the stabilizer class, as proposed by several methods. The most 

applicable of these methods from a numerical standpoint is 

the state space method, as it leads either to Riccati equations, 

or to linear matrix inequalities [27]. 

The following three steps are taken into account in robust 

analysis: 

i. Define a mathematical model for uncertainty. 

ii. Check whether the system is stable within the bounds of 

uncertainty. 

iii. Examine whether the system, if stable, exhibits 

desirable performance. 

The superiority of H∞ control lies in its ability to take 

explicitly into account the worst effect of unknown 

disturbances and noise in the system.  Furthermore, at least in 

theory, it is possible to synthesize an H∞ controller that is 

robust to a prescribed amount of modeling errors.  

Unfortunately, this last possibility is not implementable in 

some cases, as it will be subsequently illustrated. [8]. In what 

follows, the robustness to modeling errors of the designed H∞ 

controller will be analyzed. In all simulations, routines from 

Matlab‟s Robust Control Toolbox will be used.  In particular: 

1. For uncertain elements, 

2. To calculate bounds on the structured singular value, 

Numerical models used in all simulations, are implemented 

in three ways: 

1. Through Eq.,(6) with, 

0 ( )p KK K I k    

0 ( )p MM M I m    

0 0 2 2 0 2 20.0005[ ]p n n K p n n MD D K k I M m I      

and subsequent evaluation of matrix N for specific values 

of kp, mp. 

2. By use of Matlab‟s “uncertain element object”. As 

explained, this form is needed in the D-K robust synthesis 

algorithm. 

3. By Simulink implementation of Fig. 7.  

V. INPUTS- RESULTS 

A typical wind load (Fig. 8) acting on the side of the 

structure. The wind load is a real life wind speed 

measurements in relevance with time that took place in 

Estavromenos of Heraklion Crete. We transform the wind 

speed in wind pressure with; Loading corresponds to the wind 

excitation. The function fm(t) has been obtained from the 
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wind velocity record, through the relation 

21
( ) ( )

2
m uf t C V t   (46)  

where V=velocity, ρ=density and Cu=1.2. 

 
Fig.8 wind load 

Moreover, in all simulations, random noise has been 

introduced to measurements at system output locations within 

a probability interval of ±1%.  Due to small displacements of 

system nodal points, noise amplitude is taken to be small, of 

the order of 5 × 10
–5.

. On the other hand, the signal is 

introduced at each node of the beam by a different percentage, 

that percentage being lower at the first node due to the fact 

that the beam end point is clamped. Τhe controller obtained 

by applying H∞ control has an order equal to 36. For this 

controller, γ = 0.074<1. A plot of the maximum singular 

value of the weighted closed-loop system (beam plus H∞  

controller) is given in Fig. 9, where we can clearly note that 

the value remains below γ at all frequencies. 

 
Fig. 9 Maximum singular value of the closed-loop system 

Fig. 10 presents the Bode diagrams of diagonal elements of 

the above weight matrices. These matrices have been 

obtained through a number of tests, to ensure feasibility of 

finding a controller H∞. 

 
Fig. 10 Bode diagram 

Figures 11 a b, further show the maximum singular values 

of transfer functions of the closed-loop system (i.e. the initial 

one). 

 
Fig. 11a, b Max singular values 

These figures show that the performance of the computed 

controller is satisfactory, since: 

1) As shown in Fig. 11a, there is a significant improvement 

in the effect of disturbance on error up to the frequency of 

1000 Hz. 

2) As shown in Fig. 11a, there seems to be little effect of 

noise on error for frequencies beyond 1000 Hz. 

3) Fig. 11b, shows a satisfactory effect of the disturbance 

on the size of the control scheme (the design could be 

improved, if it were possible to reduce noise effect for 

frequencies of 1000 Hz). 

To validate the above findings, system response time 

histories for the three input cases mentioned in this section are 

presented below in session 5 (Fig. 18, 19).  

VI. RESULTS FOR ROBUST ANALYSIS 

Robust analysis is carried out through the relations: 

 Δ 11sup ( j ) 1N


 



R

 

(for robust stability), and, 

  1)j(sup Δ 





N
a



  

for robust performance 

For the H∞ found, robust analysis was performed for the 

following values of mp,kp. 

1. mp = 0, kp = 0.9. This corresponds to a ±90% variation 

from the nominal value of the stiffness matrix K.  In Fig. 

12 are shown the bounds on the μ values. As seen the 

system remains stable and exhibits robust performance, 

since the upper bounds of both values remain below 1 for 

all frequencies of interest. This result is validated in Fig. 

13, where the displacement of the free end and the 

voltage applied are shown at the extreme uncertainty. 

Comparison with the open loop response for the same 

plant shows the good performance of the H∞ controller. 

Results are very good, and the beam remains in 

equilibrium even under realistic wind conditions. 

Reduction of vibrations is observed, while piezoelectric 

add-ons produce voltage within their tolerance limits(±

500volt) 



                                                       
   

 

ISSN: 2277-3754   

ISO 9001:2008 Certified 
International Journal of Engineering and Innovative Technology (IJEIT) 

Volume 3, Issue 3, September 2013 

 

 

124 

 
Fig. 12 μ-bounds o H∞ the controller for mp=0, kp=0.9 

 

 
Fig. 13 Displacement and control at free end for the H∞ 

controller with mp = 0, kp =0.9 (extreme values) 

2. mp = 0.9, kp = 0. This corresponds to a ±90% variation 

from the nominal value of the mass matrix M. In Fig. 14 are 

shown the bounds on the μ values. As seen the system remains 

stable and exhibits robust performance, since the upper 

bounds of both values remain below 1 for all frequencies of 

interest. This result is validated in Fig. 15, where the 

displacement of the free end and the voltage applied are 

shown. Comparison with the open loop response for the same 

plant shows the good performance of the controller. By 

employing the H∞ control, vibration reduction is achieved, 

while the voltage applied is significantly lower that 500 V. 

 

 
Fig. 14 μ-bounds of the H∞ controller for mp =0.9, kp =0. 

 
Fig. 15 Displacement and control at free end for the H∞ 

controller with mp =0.9, kp =0 (extreme values) 
 

3. mp = 0.9, kp = 0.9. This corresponds to a ±90% variation 

from the nominal values of both the mass and stiffness 

matrices M, K.In Fig. 16 are shown the bounds on the μ 

values. As seen the system remains stable and exhibits robust 

performance, since the upper bounds of both values remain 

below 1 for all frequencies of interest. This result is validated 

in Fig. 17, where the displacement of the free end and the 

voltage applied are shown. Comparison with the open loop 

response for the same plant shows the good performance of 

the controller. Results are very good, and the beam remains in 

equilibrium even under realistic wind conditions. Reduction 

of vibrations is observed, while piezoelectric add-ons produce 

voltage within their tolerance limits. 

 
Fig. 16 Displacement and control at free end for the H∞ 

controller with mp =0.9, kp =0 (extreme values) 
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Fig.17 Displacement and control at free end for the H∞ 

controller with mp =0.9, kp =0 (extreme values) 

Furthermore, we control the structure with variations of the 

nominal values of the mass matrix M, stiffness matrix K and 

matrices A and B. We take into consideration nonlinearities 

and system dynamics neglected in modeling, incomplete 

knowledge of disturbances, environment influence in the form 

of disturbances, and unreliability of system sensor 

measurements. In Fig.18α,β complete vibration reduction is 

achieved even for variations of beam mass and stiffness up to 

50%. The piezoelectric force is in their endurance limits, less 

500 Volt, Fig 18c.  In Fig 19a,b complete vibration reduction 

is achieved even for variations of matrices A and B up to 50%. 

Moreover, controller size contains so as to lower energy 

consumption and maintain piezoelectric materials within 

operation limits (500 volt), Fig. 19c. 

 

 
Fig. 18 Variations of nominal mass and stiffness matrices 

 
Fig. 19 Variations of nominal matrices A and B. 

VII. CONCLUSION 

In the present work, the use of active control technology in 

smart structures has been presented. The goal of control is 

vibration reduction, while sustaining low steady state error, 

short recovery time and small maximum uplift; at the same 

time, control energy must remain within operating limits. The 

beam that was used was discretized using one-dimensional 

finite elements with two degrees of freedom per node. 

Piezoelectric actuators were embedded in it with the objective 

of reducing vibrations under stochastic loading conditions. 

We applied more advanced control techniques, such as the H

∞ criterion. The advantage of H∞ control is the fact that it 

allows taking into account in the computation the worst case 

result of disturbances with uncertainty and system noise. 

Moreover, the H ∞  controller can effectively cope with 

stronger input, permitting design for a large frequency 

bandwidth. Results are noteworthy; vibration reduction is 

observed even for realistic wind loading, with piezoelectric 

component voltage kept within tolerance. The robust 

characteristics of the H∞ controller were then assessed, taking 

into consideration nonlinearities and system dynamics 

neglected in modeling, incomplete knowledge of 

disturbances, environment influence in the form of 

disturbances, and unreliability of system sensor 

measurements. Complete vibration reduction was achieved 

even for variations of beam mass and stiffness up to 50%. H

∞ controller results were very satisfactory and prove that H

∞ control can reduce smart structures vibrations and deal 

with modeling uncertainty, external disturbances, and noise in 

measurements.  
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