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Parallel processing computer implementation of a 
real time DC motor drive fault detection algorithm 

G.S. Stavrakakis 
C. Lefas 
A. Pouliezos 

Indexing terms: Fault detection, Robotics, Algorithms, Motors 

Abstract: The present paper describes a fault 
detection system for robotic DC motor drives. 
First, the fault detection method is presented, 
which, by reducing the amount of computation, 
permits a higher sampling rate than other fault 
detection methods. Next, the effectiveness of the 
method is verified using simulation results and, 
finally, the implementation of the algorithm on a 
commercially available parallel processing 
machine is given. 

1 Introduction 

The continually increasing demands for reliability and 
safety of technical plant have steered the improvement of 
industrial process supervision and monitoring methods 
as part of the overall control scheme. 

The early indication of failures can help avoid major 
breakdowns and catastrophies that could otherwise 
result in substantial material damage and human injuries. 
Similarly, failure detection and isolation has become a 
critical issue in the operation of high-performance ships, 
airplanes, space vehicles and structures where safety, 
mission accomplishment and material value are at stake. 
By assisting the human operator in assessing the nature 
and extent of the fault, automatic diagnostic systems may 
contribute significantly to the fast and proper reaction to 
failure situations, with such reactions ranging from 
immediate emergency actions to long-term modification 
of the maintenance schedule [2]. 

An essential prerequisite for the further development 
of automatic supervision is real time process fault detec
tion. Because of restrictions in available computing 
power at reasonable cost, classical fault detection 
methods usually compare output signals with limit values 
only [3, 5]. 

A method with which to deal with this problem is the 
use of real time fault detection algorithms, which detect 
faults by estimating several parameters that are not 
directly measurable. An unexpected change in these 
parameters indicates the gradual buildup of the fault [1, 
3, 8]. 

A major concern of such methods is the number of 
computations that have to be performed. Since computa-
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tions have to be performed in real time, simplifications of 
initial theoretical methods are keenly sought after, even if 
this results in slightly degraded performance [1, 3, 5]. 
This effort is complemented, however, by the substantial 
increase in computing power, at the same cost. 

A method suitable for real time implementation is 
given by Stavrakakis and Pouliezos [ 4]. The major 
strength of this method is the recursive form of all the 
necessary computations, resulting in a smaller memory 
requirement and increased speed. These ideas are further 
developed in this paper and the whole fault monitoring 
scheme is implemented on a parallel processing machine. 
The performance of the system is assessed by simulation. 

2 Theoretical background 

The considered unit under test (UUT) is regarded as a 
multi-input multioutput (MIMO) continuous time 
system. The system model parameters 8 represent more 
or less intricate relationships between several physical 
process coefficients, e.g. length, mass, inertia, drag coeffi
cient, viscosity, resistance and/or capacitance. 

Since the physical process coefficients p, which indicate 
system faults, are not directly measurable, faults are 
detected via the change in the values of the process model 
parameters 8. An estimation of the model parameters can 
be made from measurement of signals y(t) (system 
outputs) and u(t) (control inputs), the process theoretical 
model and modern estimation theory. A necessary 
requirement of this procedure is the existence of the 
inverse relationship 

P = F- 1(8) (1) 

In the case of engines, theoretical models can be found in 
almost every case [3]. 

The first stage of the fault detection procedure consists 
of the estimation of parameters 8 from the measurements 
and is followed by the calculation of the physical process 
parameters p using eqn. 1. The last stage consists of the 
fault detection decision mechanism. Fig. 1 shows a block 
diagram for fault detection using parameter estimation. 

The recursive nature of all computations, makes the 
algorithm especially suitable for online applications using 
multiprocessor computer hardware. Such systems are 
currently commercially available at a modest cost, which 
is rapidly decreasing. In this sense it is reasonable to 
expect that real time fault detection will become increas
ingly popular and will be implemented in dedicated 
multiprocessor systems. 
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In the next Section, the development of a real time 
fault detection algorithm for robotic DC drives is 
described. It is implemented on a four-processor trans
puter system. The algorithm is broken down into four 
tasks, which are carried out by each processor. At the 
end of each task the processors are synchronised. 

process r- ----------------
" ·I o,, •. ,, l_jt·' 

II l __ =~-;a;:m~t~~ -k- ___ j 
estimation 

II e 
v 

calculation 
of process 
coefficients 

II p 
v 

fault 
decision 

II f 
v 

fault 
diagnosis 

II II 
v v v 

<= 

fault fault fault 
location size cause 

II 
v 

decision on action to be adopted 

theoretical 
modelling 
p=F-1(9) 

Fig. 1 Generalised structure of fault detection method based on 
parameter estimation and theoretical modelling 

3 Fast fault detection for a DC motor drive 

In this Section the application of the method to robotic 
systems driven by a speed-controlled direct current 
motor is considered. 

Using the global dynamic model of a three degrees of 
freedom robotic manipulator derived by Tzafestas and 
Stavrakakis [7], the state-space representation for the 
actuator of the ith link of the robot can be written as 

y<l)(t) + A 1/
1l(t) + A 0 y(t) = B0 u(t) 

where 

A1 = 0 E g'-X4 

~ 
R; 

L; 
Ao = _ Kmi 

Jm;N; 

Km;N;J 
L; 

P; 

Jmi 

l_!_ 0 J B- L; 
0- 1 

0 --
JmiNf 

uT(t) = [V,{t) Tdt)] 

yT(t) = [i~t) m~t)] 
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(2) 

where 

V; = applied armature voltage 
TL; = disturbance torque referred to link side of drive 

shaft 
i1 = armature current 

ro1 = shaft angular velocity referred to link side of 
drive shaft 

N1 =gear ratio 
J mi = moment of inertia of drive rotor 

Km; =electromechanical constant of motor (the back-
EMF constant is equal to the torque constant) 

R1 =armature resistance 
L 1 = armature inductance 
p 1 = viscous friction coefficient 

The subscript i denotes the ith joint of the robotic manip
ulator. Define 

i.e. 

R; 
81 = L; 

9
2 

= Km;N; 
L; 

1 
83 = L. 

' 

94 = - Kmi 9s = J!..i.. 86 = - __ 1_2 
Jm;N; Jmi Jm;N; 

(JT = [91, 92, 93, 94, 95, 86] E R6 

(3) 

The following variables are measured for each motor: 
armature current, angular velocity, armature voltage and 
shaft torque. 

The former two are the system outputs, whereas the 
latter are the system inputs. Input and output signal mea
surements are available at discrete times t = kT0 , k = 0, 
1, ... , N, ... (where T0 is the sampling time) defined as 
i1(k), ro1(k), V,{k), TL1(k). We therefore have the following 
observation equations: 

y\1l(k) = f/!I(k)Oa + e1(t) 

y~1 l(k) = t/11(k)Ob + e2(t) 

where 

f/!I(k) = [-yT(k) u1(k)] e R 3 

t/11(k) = [-yT(k) uik)] e R3 

(4a) 

(4b) 

The algorithm is implemented on a four-processor system 
operating as a two-stage pipeline. At the input, a mea
surement unit M feeds the first two processors. At the 
output, a fault decision unit operates as a separate unit, 
having, however, a light computational load and it is 
therefore a low cost processor system. The fault monitor
ing scheme is broken down into four tasks carried out by 
the four processors. 

Specifically, the following steps are carried out at every 
sampling instant k: 

Measurements: Measure i~k), m~k), V,{k) and Tdk) and 
measure or compute the derivatives ijll(k) and mj 0 (k) by 
the third order backward formula: 

1 
ijl)(k) = 2h {3i;(k) - 4i;(k - 1) + i;(k - 2)} 

mPl(k) = ;h {3ro1(k)- 4m~k- 1) + m1(k- 2)} 

where h = To is the sampling interval. 

(5) 

Task 1: Perform one iteration of the recursive least 
squares (RLS) parameter estimation algorithm for 
parameters 

OI = [8 182 83] 
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Task 2: Perform one iteration of the parameter esti
mation algorithm for parameters 

OI = [84 05 06 ] 

The algorithm and its computational load are described 
in Appendix 6.1. 

Task 3(a): Calculate the physical parameters p!._k), 
i = 1, 2, 3 from the previously computed estimates for (J" 
and (Jb, using 

(k) = R. = 01(k) 
P1 ' 03(k) 

1 
P2(k)=L-=

' Oik) 

02(k) 
P3(k) = N;Kmi = 03(k) 

(6) 

The case of a fault occurrence in the gearbox is con
sidered as an event with probability 0. 

Task 3(b): Redefine the data window by accepting the 
new estimates p,{k), i = 1, 2, 3, dropping the oldest esti
mates p!._k - N w- 1) and recalculating the real time 
parameter mean and variance estimates (i.e. the param
eter statistics are estimated over the N w + 1 most recent 
parameter estimates). The relevant recursive equations 
(11-13) are given in Appendix 7.2. 

Task 3(c): Compute the likelihood ratio for the fault/ 
no fault hypothesis according to eqn. 14 or 15. 

Task 3(d): Decide whether a fault condition exists. The 
decision is taken by comparing the likelihood ratio 
obtained in task 3(c), against a predefined threshold. To 
avoid false alarms, the fault condition is signalled if the 
threshold is exceeded in M consecutive instants. The 
optimal threshold value and M are best chosen by trial 
and error using simulation. 

Task 4: Perform tasks 3(a) to (d) for parameters p4 (k) 
and p 5(k), using 

2 Oik) 
P4(k) = N; J mi = - 03(k)04(k) 

and 

2 02(k)Os(k) 
Ps(k) = N; P; = - 03(k)04(k) (7) 

The above procedure assumes that the algorithm is run 
initially on a fault free DC motor. The nonerror statistics 
are obtained from this run and are used subsequently in 
tasks 3(b) and (c) and 4(b) and (c). 

The initialisation of the algorithm in real time (until 
the first N w measurements are processed) uses the follow
ing equations once: 

1 Nw 

f40) = N w i"'f/;(j) 
1 Nw 

8-f(O) = N w i"'f-1 [p!j) - .U/..0)] 2 (8) 

1 Nw 

o}(O) = N w i"'f-1 [p,{j) - ji;]2 

Alternatively, the recursive equations 9 and 10 of Appen
dix 7.2 can be used. 
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4 Simulation results: implementation 

The effectiveness of the method was verified using simu
lated data. For this purpose the DC motor robotic actu
ator parameters are 

R = 1.04 n jm = 0.00005 kgm2 

L = 0.00089 H p = 0.005 kgm 2/s 

Km = 0.0224 Vs/rad N = 64 

A 2 kHz sampling frequency is considered. The nonerror 
estimate statistics are calculated using N. = 300 samples, 
whereas the detection window is N w = 50. The first 
parameter estimate to be used by the detection procedure 
was taken at tine k = 70, giving a large initial sample. 
The likelihood ratio fault detection threshold value is 
11.2, while M is set at 10. These values are determined by 
trial and error. 

A normal operating DC drive was simulated from 
sample time k = 1 to k = 130. A fault occurs at sample 
number k = 131, indicated by a 4.8% change in the 
armature resistance R1 (i.e. Rlf = 1.09 !l). The results in 
Figs. 2a to e are obtained using an RLS estimator with a 
foregetting factor A."= 0.95 for the estimation of (J" and 
A.b = 0.99 for the estimation of (Jb . As can be seen, all esti
mates converge quickly to their respective values after the 
fault occurrence. The exact estimated values are shown in 
Table 1. 

Table 1 : True and estimated values for test run 

R, L, Km 1 N, Jm1~ p,N~ 

True value 1.09 0.00089 1.4336 0.2048 20.48 

Estimated 1.1 0.000896 1.4476 0.2038 20.82 
values at 
sample time 
k=300 

Fig. 3b shows the fault occurrence likelihood ratio for 
parameter R 1 . A sharp increase in the likelihood is 
observed after k = 131 (the time when the fault occurs) 
enabling early and accurate detection of the fault. The 
index shown in Fig. 3a is introduced to show on which 
parameter the fault has occurred. Its value depends 
directly on the values of the fault occurrence likelihood 
ratios. The fault occurrence likelihood ratios for the other 
parameters are not disturbed, resulting in the desired 
fault distinguishability. 

A major factor in the success of the above algorithm is 
the assumption of the 2 kHz sampling rate. This means 
that the algorithm must be implemented on a computer 
capable of performing all the above calculations in 
0.5 ms, an almost impossible task for single processor 
architectures. The above procedure, however, is suitable 
for implementation on parallel processing machines, e.g. 
the INMOS transputer system. This algorithm is imple
mented on a system employing four transputers as shown 
in Fig. 4. The numbers shown in Fig. 4 correspond to the 
tasks performed by each machine according to the task 
partition described in Section 3. The implementation 
forms a two-stage pipeline. The first stage consists of 
machines 1 and 2 and the second stage of machines 3 and 
4. Fault decision is performed by a separate machine 
which is underutilised by the algorithm, leaving power 
for suitable presentation of the results. The computa
tional complexity (i.e. multiplications and divisions per 
recursion, MADPR) is given for all algorithms in Appen
dixes 6.1 and 6.2. It is seen that all machines perform 
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approximately the same number of operations for m = 2 
and 3, so that the system operates utilising almost its full 
computing power. 

1 400 
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5 Conclusion 

The described fault detection algorithm for DC motors is 
suitably implemented on commercial parallel processing 
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Fig. 2 Time evolution of motor characteristics with fault at time k = 0 
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Fig. 4 Four-processor real time computer implementation of DC drive 
fault detection algorithm 
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machines. The partitioning of the algorithm described 
makes it suitable for implementation on the INMOS 
transputer architecture and requires four machines. Such 
a system offers a powerful tool for fault detection in 
robotic DC motor drives in real time at a modest cost. 
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7 Appendixes 

7.1 Conventional mth order RLS algorithm with 
forgetting factor 

I tiformation available at time k: 

P(k): estimation error covariance matrix, m x m 
1/f(k): measurement vector, m x 1, according to eqn. 

4b 
O(k): unknown parameter estimate vector, m x 1, 

according to eqn. 3 
W*(k): Kalman gain vector, m x 1 

New information at time k + 1: 

1/f(k + 1) E Ir" and y<1l(k + 1) E IR 1 

according to eqns. 4a and b. 
The necessary MADPR for the algorithm are shown 

in Table 2. 

Remarks: The initialization of the RLS algorithm can be 
done either by evaluating P(O) for an initial block of data 
or by simply setting P(O) = a1, a ~ 0. 

The initial vector 0(0) can be zero or equal to the 
values of the estimated parameters used in the process 
model. 

Table 2: MADPR for RLS algorithm 

Time updating of gain vector MADPR 

W(k + 1) = (1/A)P(k)l/l(k + 1) m 2 +m 
a(k + 1) = 1 + I/IT(k + 1 )W(k + 1) m 

W*(k + 1) = W(k + 1)/a(k + 1) m 
P(k + 1) = (1/A)P(k)-- W*(k + 1 )WT(k + 1) 0.5(m 2 + m) 

Time updating of the forward predictor 

e(k + 1) = y(1 l(k + 1) -- 1/1 T (k)6(k) 
ti(k + 1) =ti(k) + W*(k + 1)e(k + 1) 

Total number of operations 

m 
m 

(3/2)m 2 + (11/2)m 

For the present case of RLS estimation of tia and tib 
the order is m = 3. Thus, the total number of 
MADPR = 30 for each estimator. 

7.2 Recursive statistics formulas 

7 2.1 Nonerror case 
For the nonerror case, H 0 (offiine statistics): 

(a) [l.!k) = (1/k)[(k- l)jJ.i(k- 1) + Pi(k)] 

i=l, ... ,m;k=l, ... ,N. (9) 

The recursion is initialised with [1.!1) = iJD). 

(b) o}(k) = ~ = ~ af(k- 1) + i CP!k)- [l.i(k- 1)]2 

i = 1, ... , m; k = 1, ... , N. (10) 
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The recursion is self-initialised by 

af(2) = t(iJi(2) - r!l)J 2 

The sample size N. is chosen sufficiently large that an 
accurate estimate for the above statistics is obtained. 

7 2.2 Error case 
For the error case Hi, i = 1, ... , m, three quantities are 
needed (real time statistics): 

(a) Window mean: 

1 k 

fl!k) = f.l I riU) 
w j=k--N.,+l 

1 
= jli(k - 1) - N y!k) i = 1, ... , m 

w 
(11) 

where 

Y1{k) = PAk - N w) - PAk) 

i = 1, ... , m; MADPR = m 

(b) Window variance: 

1 k 

a-f(k) =- I CP!i)- fJ!k)J 2 = a-f(k- t) 
Nwj=k-N.,+l 

1 [ ~ 1 + N 2yi(k)pik - t) - :N yf(k) 
w w 

- pf(k- Nw) + j}f(k)J 

i = 1, ... , m; MADPR = 7m (12) 

(c) Window variance based on the nonerror mean jJ.i: 

1 k 

af(k) =- I CP!j)- [l.J 2 = a-f(k - t) 
N w j=k--N.,+ 1 

1 
+ N [ -2yi(k)jJ.i + pf(k- Nw)- j}f(k)] 

w 

i = 1, ... , m; MADPR =2m (13) 

The total number of operations is 10m per iteration. 
These three iterative schemes need a starting window 

of N w sample values Pi for initialisation. The window size 
N w is chosen so that reasonable rates for missed alarms 
and false detections are achieved. The advantage of using 
a moving window of sample parameter values iJ!k), i = 1, 
... , m, is in the improved speed of detection. 

A fault in the ith parameter is declared at time k, if the 
quantity (MADPR = 3m) 

A{k) = Nw [a-i(k)- 2 In (8-!k))- 1] 
I 2 ai(k) a !k) 

(14) 

exceeds a predetermined threshold in M consecutive time 
instants. The threshold value and M may be chosen by 
simulation. 

Alternatively, the comparable quantity may be 
(MADPR =2m) 

A-(k) = ui(k) - 2 In (8- 1-(k)) 
I i1

1
{k) a

1
{k) 

(15) 

with the threshold value modified accordingly. 
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