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ing argument to the pair (A 1+ K1C1, C1) where K 1- [ ~ J and the asser­

tion of the theorem for observability follows. The application of the 
preceding argument to the unstable eigenvalues of A 1 completes the 
proof. 

Consider the case when the inputs are not directly observed in the 
output (i.e., D-O). Since p(C[I-(A +KC)r 1B)<:min[p(C),p(B)]<: 
min[n,m,p], Theorem 3.1 shows that at least p sensors are needed in 
order to detect simultaneous jumps in p different actuators when p <: n 
and D-0. Although there is practically no limit to the number of single 
actuator jumps, we can hypothesize as long as the necessary and 
sufficient rank condition is satisfied; the preceding theorem establishes a 
limit on the number of simultaneous actuator jumps that can be detected 
for a given number of sensors. When the outputs contain direct measure­
ments of the inputs (i.e., D.pO), we have p(C[I-(A +KC)] - 1[B+KD] 
+D)<:min[p(C), p(B+KD)]+p(D)]<:min[m,n]+p(D) so that at least 
p-p(D) sensors are needed to detect p simultaneous jumps in inputs. 
That is, the necessary number of sensors to detect jumps in p inputs 
decreases by the number of linearly independent direct input measure­
ments. 

We also note that, in general, the matrix B in (2.1) will not be the 
system input matrix. If the original system input matrix is the n xI matrix 
B0 and the hypothesized jump directions are [!1, j 2 , • • · , ~] where p <:I 
and./;ER1, then B will have the form B0 ./; for a single jump and the rank 
condition will be p(C[I -(A +KC)r 1[B0./;+ KD]+ D)= l. On the other 
hand, for simultaneous jumps in p actuators B will have the form 
B-B0 F where F-[J1k · · ~] and the rank condition will be given by 
p(C[I -(A +KC)r 1[B0 F+ KD)+ D)=p. 

IV. DETECTABIUTY OF JUMPS IN 0urPUTS 

Detectability of a jump in output in (2.1)-(2.3) will be dictated by the 
observability (detectability) of the pair of (AO> C0) 

A =[A 0] 0 0 I 
Co=[C H] (4.1) 

where I is the identity matrix of order q. 
Theorem 4.1: The pair (AO>Co) defined by (3.1) is observable (detect­

able) iff (A ,C) is observable (detectable) and p(C[I -(A+ KC)]- 1KH + 
H)- q, where K is any matrix such that 1 fts(A + KC). 

The proof follows from Theorem 3.1. If the system does not have 
neutrally stable eigenvalues, the condition for detectability of a jump in 
output reduces to the requirement that the original system be detectable 
and p(H)= q. Oearly, the detectability of an output jump puts less 
stringent requirements on the system than the detectability of an input 
jump. 

V. SIMULTANEOUS JUMPS IN INPUTS AND OUTPUTS 

When simultaneous jumps in inputs and outputs are hypothesized, the 
observability (detectability) of the pair (A10, C1o) 

A,=[~ g] c,=[ c oJ. (6.1) 

Theorem 6.1: The pair (A,, C,) defined by (6.1) will be observable iff 
(A,C) is observable and p[C(A+KC)- 1E]=r, where K is-any matrix 
such that A + KC is nonsingular. 

The proof is similar to that of Theorem 3.1. Since E will represent a 
jump in states constrained to lie in an r-dimensional subspace [15) and 
since p[C(A +KC)- 1E]<:min(m,n,r), at least r sensors are needed in 
order to detect a jump in states constrained to lie in an r-dimensional 
subspace. 

VII. CoNCLUSIONS 

Necessary and sufficient conditions for detectability of jumps in 
inputs, outputs, and states in linear systems have been given. Results 
indicate the minimum number of sensors necessary for detection of 
different hypothesized jumps. 
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An Iterative Method for Calculating the 

(5.1) Sample Serial Correlation Coefficient 

will be required for detection. 
Theorem 5.1: The pair (A10,C10) as defined by (5.1) is observable 

(detectable) iff (A, C) is observable (detectable) and p( C[ I- (A + 
KC)r 1[B+ KDJ+ DIC[I -<A+ Kc>r 1KH + H)=p + q. 

The proof is similar to that of Theorem 3.1 and is omitted. 

VI. DETECfABIUTY OF JUMPS IN STATES 

Another important jump phenomenon is an abrupt change in states. 
The detection of these types of jumps is especially important since they 
usually model unknown physical properties of a given system. The 
detectability of a state jump will be dictated by the observability of the 
pair 

A. POULIEZOS 

Abstmct-ln this paper a fast on-line procedure for the calculation of 
the sample serial correlation for serially received data Is presented. 

I. INTRODUCTION 

In this brief paper an iterative procedure for the calculation of the 
serial correlation coefficient of Jag k is proposed. This function is 
required in some applications of control theory, especially in stochastic 
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systems w,here the Kalman filter is employed. The function may be used 
to check the optimality of the Kalman filter[!], [2]. 

It has been shown [2] that if possible errors in the description of the 
system model arise only from incorrect noise covariances, then the filter 
is optimal if and only if the measurement residuals are independent in 
time. A test can then be devised for checking this condition by looking at 
the history of the correlations. 

As outlined in [3], this procedure is rather cumbersome computation­
ally, particularly for on-line applications. 

In the sequel, an iterative method is presented which is suitable for 
on-line batch processing of residuals. 

II. PROBLEM STATEMENT 

The sample serial correlations of lag k are calculated from 

(I) 

where N is the number of vector Kalman filter residuals /31 considered at 
each time instant and 

. I N 
P-- ~ p, 

N 1-1 

denotes the sample mean. (As mentioned in [4], division by N instead of 
N- k in (I) results in estimates which are positive definite, asymptoti­
cally unbiased, and have smaller MSE.) 

As mentioned before, an optimality test for the Kalman filter can be 
devised which utilizes the Ck's, k= I,··· ,I. The test consists of looking 
at the diagonal elements of Ck, k~ I,··· ,I and counting the the number 

of times they lie outside the band ± 1.96/YN [C0 ] 11 , for the 95 percent 
confidence limit. 

If the number is greater than 95 percent of the total, the null hypothe­
sis of normality of the serial correlations is rejected and a fault declared. 

III. CoMPUTATIONAL PROCEDURE 

Suppose that at time instant t, when new information arrives, a batch 
of N residuals is considered, so that if 

are considered at time t 

are considered at time t + I. 
Let the serial correlations and means calculated at time t be denoted 

by 

and their elements by 

[ctL.P/. 

In the proposed methodJC~+ 1 ] 11 is cal_culated from [C_k]li' This is 
d<?ne by first calculating [CJ+ 1

];; from [CJ];; and then [Ck+ 1] 11 from 
[Cf~U11 • k-1,···,1. 

The iteration on k is considered first. From (I) 

Comparing terms in (2) and (3) and dropping suffixes gives 

P1 ± /3,= ( P1 ± p,)- PI-N+k ~ qfc 
i-t-N+k+l i-t-N+k 

and 

Therefore 

where 

initialized by 

qfc-qfc_I-/31-N+k 

pfc-pfc_.- Pl-k+I 

I 

qiJ=piJ= ~ /3,-=NP1. 
i-1-N+I 

(5) 

So once qJ, pJ, and P1 are evaluated, Cfc can be calculated for each 
k- I,· · · , I. From (5) follows that it is sufficient to calculate P1 from 
p1

-
1
• This can be easily done by considering 

(6) 

It remains to calculate CJ from cc:-•. From definition 

(7) 

(8) 

From (6) 

Comparing with (8) 

I ~ n2 ( I ~ 2) I ( 2 2 ) N ""' 1'1 - N ""' p, + N {JI - fJI-N . 
i-t-N+l i-t-N 

Also 

I 

2P1 ~ fJ,=2P'NP1=2N{iJ1)2 

i-t-N+l 

and 

(2) Now 

Also 

• I 
1 

( • • • 2) (C:Jaa- N ~ P,/J,_k-PtP1-P1P;-k-(P') aa· (3) 
i-1-N+k+I 
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Hence 

c&= c&- l + ~ < 13?- 13?-N) -< {3,- f3, _N)2 -2fi'- 1<f3,- {3,_N). 

Let a'= 1/ N(/31 - /31-N), then 

c' = c'-1 + _!_ ( 13 2_ 13 2 ) _ a'(a' +213• 1-1) 0 0 N I t - N • 

So once the first batch of N residuals has been processed and C(;' has 
been calculated, an iteration may proceed for subsequent batches. 

The algorithm is suitable for implementation on a digital computer, 
and results in a faster execution time with reduced storage requirements 
by comparison with existing methods. 
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A Projected Stochastic Approximation Method 
for Adaptive Filters and Identifiers 

HAROLD J. KUSHNER 

Ab.stlvct-Generally, when stochastic approximation is used to identify 
the ooefficients of a linear system or for an adaptive fUter or equalizer, the 
iterate Xn is projected back onto some finite set G= {x: lx;l< B, all i}, if 
it ever leaves it. The convergence of such truncated sequences have been 
discussed Informally. Here it is shown, under very broad conditions on the 
noises, that {Xn} converges with probabUity 1 to the closest point in G to 
the optimum value of Xn. Also, under even weaker conditions, the case of 
constant coefficient sequence is treated and a weak convergence result 
obtained. The set G is used for simpHcity. It can be seen that the result 
holds true in more general cases, but the box is used since it is the only 
commonly used constraint set for this problem. 

I. INTRODUCTION 

Reference [I) deals with a great variety of stochastic approximation 
procedures, for constrained and unconstrained systems and for conver­
gence with probability I (w.p.l) and weak convergence! all for systems 
with correlated inputs. The techniques of [I) are readily usable for many 
problems that are not explicitly treated there. This will be illustrated here 
for one particular class of constrained problems which is of great current 
interest and which arises in identification and in adaptive control theory. 
In fact, it is just such constrained problems to which more attention 
should be given, owing to their prevalence. The proofs are contained in 
various parts of [I) and, here, after the problem is defined, it is shown 
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1Weak convergence is a substantial extension of convergence in distribution [1]. 
Roughly, a sequence {P,} of measures on the space of continuous functions C[O, oo) 
converges weakly to a measure P on C[O, oo ), if for each real valued function F which is 
bounded and continuous on C[O, oo), J F(f)dP.(f>- J F(f)dP(f). 

how to put the bits and pieces together. The problem and method are 
typical of a large class of adaptive systems which can be treated by 
similar methods, and is worth singling out. 

In [1), [2), it is shown how (under certain conditions) an ordinary 
differential equation can be associated with a stochastic approximation 
algorithm, and that the asymptotic points of the SA (constrained or not) 
are the stability points or invariant sets of this equation (equation 
projected onto the constraint set in the constrained case). Such an idea is 
very useful but has not been explicitly proven for the class of algorithms 
dealt with here. This extension is done here. The methods are applicable 
to a broader class of problems. In our case, the limit point will obviously 
satisfy the necessary condition for a minimum in the "least square" 
identification problem-indeed, there is only one point satisfying this 
condition. Previous works on constrained SA have not dealt explicitly 
with algorithms where the noise appears in the form that it does here. A 
purpose of this paper is to show how to make the necessary adjustments 
in the proofs so that such algorithms are covered. 

The problem will be set up in such a way that it fits both a standard 
identification problem and a standard problem in adaptive equalizers. 
Let { d,} denote a scalar valued desired output sequence, perhaps a 
training or reference signal, or output of the system to be identified. The 
problem can readily be set up so that all quantities { dn,un ,Xn;•Pn} are 
complex valued, but in the interest of simplicity, we suppose that they 
are real valued. Let { un} denote an input sequence set 1/Jn = 
(un,· · · •"n - r+l)' and let {Pn} be a noise sequence, independent of {un}· 
The observed adaptive system output at time n is defined by 
~'i:f>xn~un - i = Yn• and the "perturbed" observed reference at time n is 
d, + Pn · The idea in [2)-[4) and in many other papers is to adjust the 

system parameter Xn=(Xno> · · ,Xn,r-l)' so that the output {Yn} "best 
matches" the {dn} in a mean-square sense. A co=on recursive adap­
tive algorithm for doing this is 

Xn+l =Xn-ani/Jn£,• £n=(yn-dn-Pn) 

= Xn- a, !/In( 1/I~Xn- d,- p,), an--+0, }: an=oo, 
" 

an>O. 

(1.1) 

Algorithm (1.1) has been the focus of an enormous amount of effort. 
In practice, there is usually given a bound B such that if some IXn~l >B, 
then Xn; is i=ediately reset to the closest value + B or -B. This 
projected version has received little attention. Ljung [2] discusses it but 
deals with it only when the optimum value of Xn is strictly inside the box 
G= {x: lx;l <B;}· The methods of (I) can readily handle such problems 
whether or not the unconstrained optimum is in G. Assumptions are 
stated in Section II. These are of the type used in [I) and are quite 
unrestrictive. In Section III it is shown that {Xn} converges w.p.l (under 
assumptions in Section II) to the point in G which is closest to the 
optimum value. Incidentally, if the optimum is strictly interior to G, then 
the rate of convergence results in (5) hold. Section IV deals with a 
formulation where an=/3 > 0, a constant, and discusses some limit results 
of a "weak convergence" nature, also using techniques from [1). 

In many of the proofs in [I), it is assumed that the iterate sequence 
{ Xn} is bounded in some sense. Owing to the possible use of the 
projection algorithm (as in this paper), this boundedness assumption is 
hardly a restriction. This is one of the secondary points of this paper. 

II. AsSUMPTIONS FOR THE PROBABILITY ONE CoNVERGENCE CASE 

Define m(t)=max{n; tn<t}, t>O, where 

n- l 
t,= ~ a;, m(t)=O, for t < O. 

;-o 

AI) There is a positive definite symmetric matrix R such that for each 
£>0 and some T< oo 

lim P sup max ~ a;(l/1;1/1;-R) >£ =0. 
{ 

l

m(jT+t)-1 I } 
n-oo }>n t<.T i-m(jT) 

(2.1) 
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