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A simple method to assess the safety of metallic structures in the presence of crack-like 
defects is considered. Linear regression techniques are used to fit fatigue-crack growth 
(FCG) laws of exponential type with respect to the number of cycles, in FCG experimental 
results. A moving window regression method is used to accurately predict whether or not 
the critical crack length region is reached. The probability of fast failure at any time 
(number of cycles) is formulated in terms of a characteristic defect size exceeding a critical 
value. The concept of conditional probability of failure is also employed here in order to 
evaluate the failure rate used in reliability practice. As an illustrative example, an analytical 
closed-form solution for the failure probability of structures is presented and evaluated 
using experimental FCG data. 

1. INTRODUCTION 

During the past twenty years extensive efforts have been devoted to developing techniques 
that permit the prediction of  fatigue life of metallic structures [1-6, 9, 10]. As the know- 
ledge related to fatigue of structures and materials expanded, it became clear that in 
certain cases fatigue could be treated from a propagation point of view. This knowledge 
has led to increased life of  structures subjected to dynamic loads [7, 8, 10]. 

Any structural reliability assessment of metallic structures can be thought of as a global 
procedure relying on a number of  steps or single procedures to be concatenated: non- 
destructive testing (NDT),  material characterisation, analysis of loads, stress analysis, 
fracture mechanics analysis, fatigue crack growth analysis, failure analysis. Thus, the 
fatigue crack growth (FCG) and failure analysis presented here, should be considered 
as part of  this overall assessment. 

The fatigue process in metallic structures can be divided into stages of cycles to initiation 
and cycles to failure [1, 2, 12, 13]. The microscopic mechanism of  each of  the above will 
not be dealt with at this time. As the crack grows, it goes through a transition from a flat, 
plane strain fracture mode, to a slant, plane stress, fracture mode. The evaluation of 
fatigue-crack propagation behaviour is performed to compare materials and to experi- 
mentally (empirically) and analytically develop fatigue-crack propagation prediction 
capability. Numerous fatigue-crack propagation "laws" have been proposed. A large 
number of  these are summarised in [9], All analytical approaches to the problem have 
attempted to relate the growth rate (da /dN)  to crack length, plastic enclave size, material 
constants, stress, and specimen dimensions. 

The purpose in building models of FCG is to be able to accurately predict future 
macroscopic behaviour for purposes of  engineering design and reliability management. 
Thus, we seek a state vector in macroscopic observables that defines material damage in 
FCG and a set of  equations that describe the evolution of  the state vector such that, given 
the value of  the state vector at time to = 0, we can predict its value for any t ~ to independent 
of  past history. 

327 
0888-3270/91/040327 + 14 $03.00/0 © 1991 Academic Press Limited 



328 G. S. S T A V R A K A K I S  A N D  A. P O U L I E Z O S  

If  a model depends on details of past history we cannot predict the future evolution 
knowing only the present, and we consider this to be a weakness in any model [2, 3]. 
The set of equations must depend on the parameters that determine the conditions of 
loading and the pertinent features of material behaviour plus environment [1-5, 10]. 

A model of a physical phenomenon is deemed acceptable if it is consistent with the 
known data and predicts correctly the evolution of the phenomenon even under conditions 
different from those pertaining to the current observed data [2, 4, 12, 13]. 

The FCG process is an irreversible non-decreasing dynamic process with non-reproduc- 
ible sample functions. Three sources of variability enter crack growth test data: one is 
the difference in material behaviour among identically prepared specimens or components, 
the second is difference in environment among tests at the same load condition and with 
the same material and finally differences occur due to equipment and personnel differences. 

As is well known, models of any physical phenomenon whose evolution in time is 
governed by probabilistic laws, are stochastic processes. One natural way to construct 
such models is through dynamic equations with random initial conditions, random 
parameters or randomly time-varying coefficients. 

The procedure that has been followed first in many investigations is based upon a 
randomisation of the Paris-Erdogan one-dimensional state equation [1, 7, 12]. The ran- 
domisation of the Paris-Erdogan equation assumes that the parameters are time indepen- 
dent and uncorrelated random variables, which is not really true [12, 13]. A model that 
contains a two-dimensional state vector is presented in [4]. We note that by increasing 
the dimension of the state vector from one to two, history dependence may be eliminated. 
Naturally, data would have to support this position. 

In [5] the FCG analysis is carried out via diffusion process methods. The problem 
there is that, in general, the statistical properties of the solution process, i.e. the crack 
length, cannot be obtained unless some kind of approximations are made to the data. 
However, the fit to the theoretical distributions appear to exhibit significant deviations. 
In [6] FCG modelling is based upon a more detailed consideration of underlying 
microscopic level mechanisms. The evolution of microcracks is assumed to be governed 
by the scalar Ito equation. The associated distribution for the number of cycles to reach 
a given crack length is obtained as rather complicated functions of exponentials. In [10] 
a sophisticated stochastic model is presented describing the fatigue crack growth 
phenomenon under random overloads. The predicted lifetime is strongly dependent on 
the prescribed reliability level there: the more stringent the reliability requirement, the 
less beneficial the lifetime predictions. 

Recent studies for FCG modelling employ Markoff chain models that generate probabil- 
ity distributions of damage accumulation directly and do not start from differential 
equations for sample functions of crack growth. The most intensively studied models of 
this type are B-models that employ Markoff chains [2,3]. Crack length is the single 
observable employed. Parameter estimation has proved straightforward [2]. However, the 
B-model approach may be too cumbersome to yield insight into crack growth behaviour 
[2]. The tabulated values of the correlation coefficients for the random time required for 
the crack length to increase from level ( j -  1) to level (j) reveal that the FCG process is 
history dependent with positive correlation [2]. This means that the derivative da/dN is 
a function not only of a, but of N also, a fact that is usually overlooked. 

In the present paper FCG laws of crack length as an exponential function of the number 
of accumulated cycles are considered. These FCG laws date back to 1956 [11], but they 
are adopted here because they are simple in their application and provide good approxima- 
tions to the actual experimental data. The derivative da/dN is a function of N in these 
laws, thus the FCG prediction is history dependent. The simplicity of these FCG laws 
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permits the application of linear regression techniques and thus the fast FCG phenomenon 
can be assessed using on-line inspection measurements under any loading (including 
random overloads) and temperature conditions. This is characteristic of simple FCG 
models only. Sophisticated models, as those in [2-6, 9, 10], cannot be used for such 
purposes. The lack of precision of simple models in assessing the FCG phenomenon is 
not a disadvantage, because their parameters are updated continuously using a recursive 
moving window technique. Thus, these adaptively identified models, represent precisely 
the physical FCG phenomena at any time instant independently of the loading, environ- 
mental and material conditions. Moreover, they are very convenient if the rational 
probabilistic approach to calculate the structure failure probability is used. A set of 
experimental data is used to validate the above considerations. 

2. SIMPLE PROBABILISTIC MODELS OF FATIGUE CRACK GROWTH 

There is a considerable experimental evidence that the crack length a(N) as a function 
of the number of accumulated cycles can be modelled by the following three forms [11]: 

a(N)  = C,N m, (1) 

a(N) = C2(log,o N) m2 (2) 

a(N) = Ca e m3N (3) 

where Ci and mi, i=  1, 2, 3, are functions of applied load, material characteristics, 
geometrical configuration of the component and the initial quality of the product being 
tested. 

When several identical components are tested under nominally identical environmental 
and operating conditions, the observed curves (realisations or sample functions), show 
a considerable scatter, as illustrated in Fig. 1 [13]. 

If each realisation is modeled by equations (1), (2) or (3), then the random function 
defining the stochastic phenomena of FCG can be expressed mathematically by equations 
(1), (2) and (3), where a(N)  exhibits stochastic behaviour due to one of the following 
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reasons: (i) both C~ and m~ are random variables; (ii) at least one of them is random in 
nature. 

The nature and range of  variability of a(N)  for the experimental data of Fig. l, can 
be seen in the frequency table of Fig. 2 at N = 2 × l0 5 cycles. A statistical investigation 
of  the fatigue crack propagation process was conducted in [ 13]. The log-normal distribu- 
tion provided the best fit for the cycle count data as evidenced by the low distribution 
ranking value and the very large number of  times it was selected there as the best 
distribution. 

Equations (1), (2), (3) can be rewritten as: 

In a ( N ) = I n  C~+m~ In N (la)  

In a(N)  = In C :+  m2 In [loglo N]  (2a) 

In a( N)  = In Ca + m3N = C* + m3N. (3a) 

The graphs of  equations (la) ,  (2a) and (3a) are shown respectively in Figs 3, 4 and 5. 
The curves representing these equations should look like straight lines if the underlying 
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Figure 5. Virkler's data, equation (3a). 

laws are correct. Simple inspection shows that equation (3a) provides the best approxima- 
tion for the specific sets of  available data. 

3. THE FAILURE PROBABILITY PREDICTION MODEL 

The basic problem in structural design is to ensure that an inadmissible failure state 
will not occur during the lifetime of the structure. It is thus required that the crack length, 
a ( N ) ,  does not exceed a critical value, ac. Let the thermomechanical state of the structure 
be characterised, at any cycle number N, by a finite number of  parameters governing 
applied load, material characteristics, geometrical configuration, temperature, etc,, condi- 
tions. All the above thermomechanical state factors are lumped into the linear FCG 
equation. 
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The basic design problem is then to determine, at any number of cycles N, the probability 
of  structural failure, i.e. the probability U ( N )  that an inadmissible failure state will occur 

U( N) = P[ a( N)>~ a,] --- 1-  P[ a( N) < a,.]= 1 -  R ( N )  (4) 

where R ( N )  is the structural reliability function. 
Linear regression techniques can be easily applied to fit equations (la),  (2a) and (3a) 

in real FCG data and to assess the variability of  the parameters C~ and m~, i = 1, 2, 3. 
Equation (3a) will be used for the rest of  the paper since it provides the best fit as 

explained earlier. Moreover the number of cycles appears explicitly with any logarithmic 
transformation. The parameters in equation (3a) can be updated after any inspection of 
the structure using the method described in Section 4. 

Thus, if the random variable a(N)  has a log-normal distribution, its natural logarithm 
follows a normal distribution. It follows from equation (3a) that the quantity C* --- In C3 
will be normally distributed with mean E [ C * ]  and variance var [C*]  if the parameter 
m 3 has zero variability or if it is also normally distributed. 

One way to estimate the parameter m~ as a deterministic value (i.e. with zero variability) 
is to use the following procedure 

(1) Estimate the values of  C*, m3,i, i = 1, 2 , . . . ,  n for all n original replicate (In a vs. N)  
data. 

n 
(2) Find the mean value of rh3 = 1In Y,=~ m3,i (if/a>0). 
(3) Re-estimate the values of C* for all original replicate (In (a) vs. N)  pairs of data 

considering the value of  m3 constant and equal to r~3. A histogram for all these 
C* values can be constructed in order to assess the variability of  applied load, 
geometrical configuration and material properties. The values of  E [ C * ]  and 
var [C*]  are then estimated from the histogram using the well known formulae 
from elementary statistics. 

For engineering calculations both ~3, considered deterministic and estimated by the 
above procedure, and C* = In C3 can be assumed to be statistically independent. Thus 

/ In  a c -  E[ln a(N)]'~ 
R ( N )  = P[a (N)<  ac] = P[ln a(N)<In  ac] = ff | 7---  [ l n \ / v a r  a( N)]} t/2 ] 

where 

1 e-U:/2 du 
4 , (u)  = ( 2 ~ ) , / 2  - , ~  

is the Laplace function. 
From equation (3a) we can obtain 

E[ ln  a(N)  = E [ C * ]  + ffl3N 

var (ln a ( N ) ]  = var [C*]  

(5a) 

(6) 

(7) 

Equation (7) implies that our assumptions on the statistical properties of  m3 and C3 
result in a variance for a (N)  which is independent of  the number of  cycles N. This means 
that for small N the variance is overestimated, while for large N it is underestimated, 
as illustrated in Fig. 6. This is not expected to have a significant effect on the reliability 
calculations, since it makes our estimates pessimistic in the critical crack length cycle range. 

Substituting equations (6) and (7) in (5) and using the property of  the Laplace function 
~b(-u) = 1 -  &(u), the reliability function is given by: 

R ( N ) =  1 -  d~ ( - ~ ,  N > 0  (8) \ /~ / 
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Figure 6. Mean graph with variance limits on Virkler's data, equation (3a). 

where the parameters A, B are: 

A = l n a c - E [ C * ]  B2 = [var (C*)] 
n53 ' n~ (9) 

Parameter A represents an estimation of the mean number of cycles in order to attain 
the critical crack length ac. 

Parameter B determines the role of the quality of the product, i.e. variability of the 
properties of the material and of the loading and thermal conditions, or the measurement 
error introduced by the crack detection method, [12, 13]. 

From equations (4) and (8) it follows immediately that: 

The corresponding probability density function (PDF) is 

<'"<"> ' r__, , ' , , ' - , ,m f ( N ) =  d N  (2~') ' /2BexPL 2 \  B / j=~0 . (11) 

Equation (11) is the PDF of  the normal distribution with parameters/z = A and tr = B. 
The widespread applicability of the normal distribution in fatigue life studies is well 
known and it is verified by the above result [12-14]. 

The hazard rate function h(N)  is the conditional probability of  failure at N cycles 
given that failure has not occurred before. In other words, h(N)  is the instantaneous 
failure rate at N cycles. From the classical reliability theory h(N)  for the normal 
distribution is given by: 

¢(u)  N - A  
h (N)  = - -  u = N~O.  (12) 1-~(u)' B ' 

The failure rate is an increasing function of time in the present case. This is the reason 
that the normal distribution is appropriate to wear-out and fatigue accumulation types 
of failure [13, 14]. 
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Approximate expressions for the fast computation of the above reliability characterisa- 
tions are given in Appendix A. 

4. A MOVING WINDOW REGRESSION METHOD TO ASCERTAIN 
STRUCTURAL SAFETY 

In this section a simple method is developed for detecting the number of cycles after 
which the damage propagates quickly. Thus, the structure becomes unsafe and appropriate 
action should be taken. 

From Fig. 1 it can be seen that the curves may be thought of as consisting of two parts. 
One part corresponds to the slow propagation of the damage, while the other corresponds 
to the fast one. However it is not apparent where the dividing point is. By considering 
Fig. 4 one can see that the logarithmic transformation of the data makes this division 
clearer. Thus, by a simple visual inspection of the observed In (a(N))vs. In (log~o N) 
graph it becomes possible to identify the dividing value of the number of cycles. However, 
equation (2a) is inadequate for accurate FCG prediction purposes because it cannot 
model satisfactorily the curves of Fig. 4. As mentioned earlier equation (3a) is the most 
suitable for this goal despite the fact that the curves of Fig. 5 are not exactly straight 
lines. However, straight lines modelled by equation (3a) can adequately represent large 
portions of them. In particular, if one considers moving windows of data of appropriate 
length, iterative regression techniques can be used to track the varying slopes of the 
approximating straight lines. 

In this way an adaptive prediction method is introduced which is especially desirable 
in such cases, since the parameters of equation (3a) change with time (number of cycles), 
due to the continuous variation of the conditions related with the FCG condition (stress 
ti'ansients, random overloads, temperature, material properties, inspection technique 
variability etc.) 

Equation (3a) is rewritten as follows 

In (a(N))=[1N][lnm C3] 

=urO. 

If additionally In (a(N)) = y, then for n pairs of (a(N), N) points, the well known linear 
regression formula gives, 

~ = [ U r U ] - l C r y  

where U, y hold the information for the whole set of data. To denote explicitly the 
dependence of the estimated parameters on the number of cycles, equation (3a) may be 
written more accurately as, 

y = u r 0 ( N ) .  

Iterative methods that update the estimate whenever new information is available can 
also be used, For accurate detection purposes, a moving window regression formula is 
more appropriate, since it is more sensitive to parameter changes during the variation of 
the thermomechanical conditions of the structure. As shown in Appendix B, a moving 
window estimate is given by the following recursive equations 

O(k+ 1) = 0(k) - P ( k  + 1)[r(k + 1)0(k) - ii(k + 1)] 

P- l (k  + 1) = P-l(k)  + r ( k +  1) 
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where 

F(k  + 1) = u(k + 1)ur(k  + 1) - u(k - nw + l ) u r ( k  - nw + 1) 

8 ( k +  1) = u(k + 1)y(k + 1) - u ( k  - nw + 1)y(k - nw + 1) 

and nw is the window length. 
The proposed FCG prediction algorithm consists of  the following steps: 
Step 1: Compute O(nw) for the first nw pairs of (ln a, N)  data, using the one-shot 

regression formula. 
Step 2: Process the pair of  data coming from the next inspection using the moving 

window regression formulae. 
Step 3: Estimate the one step ahead predicted value for a ( N )  using equation (3a) and 

0 (N) .  The value of  N (number of cycles) used in this one step ahead predictor is the 
number of  cycles for the next inspection according to the inspection-maintenance schedule 
of  the structure. 

Step 4: The predicted value of a ( N )  is checked against the predetermined critical 
crack length threshold ac. If  d ( N )  t> ac an emergency condition is declared appropriate 
action should be taken, otherwise go to step 2. 

5. PRACTICAL RESULTS AND DISCUSSION 

To answer the structural reliability investigation objectives, it is necessary to conduct 
an experimental replicate test under identical load and environmental conditions to satisfy 
the statistical requirements of  the test program. 

We considered the experimental data of  Virkler et al. [ 13], which comprises 68 replica- 
tions with constant load amplitude cycling loading. The data consists of  the number of  
cycles required to reach 164 crack lengths, starting at 9 mm and terminating at 49.8 ram, 
for each replication. Centre crack aluminium (2024-T3) test specimens were employed. 
The original replicate (a vs. N)  data are shown in Fig. 1. 

The FCG law of equation (3a) is fitted into this data, using the linear regression 
technique described in Section 4. Using the procedure described in Section 3 the "deter- 
ministic" value of  the parameter m3 is estimated to be 6.89 x 10 -6 and the mean value 
and variance of  the parameter C* are estimated as 1.94 and 7.67 x 10 -3 respectively, 

The failure probability of  a cracked aluminium-2024-T3 structure constructed using 
the aluminium corresponding to the loading conditions of  Virkler's experiment can be 
calculated using equations (9) and (I0). The failure probability for the Virkler's experiment 
at N = 2 x 105 cycles and for a critical crack length ac = 32.68 mm, is found, by applying 
equations (9), (10), to be /~(200000)=0.0274. Parameters A, B of equation (9) were 
found to be 224 958.15 and 12 715.5 cycles respectively. From the propagated crack length 
histogram at N = 2 x 105 cycles derived directly from the Virkler et al. experiment the 
same probability is evaluated as U(200 000)= 0.0294. This represents a discrepancy of  
6.8%. 

The usefulness of  the moving window method is illustrated using one set of  Virkler's 
data. Simulation runs for the one-step ahead predictor indicated that the optimum window 
length is nw = 4. This produced a maximum absolute prediction error of 0.23 over the 
whole range of data, as shown in Fig. 7. If predictions of longer horizon are required, 
simulation runs could establish the corresponding optimum window length. 

The application of the above procedures for the safety and failure probability assessment 
of a real structure is straightforward. Consider first an individual defect. Let the ther- 
momechanical state of the structure, in the neighbourhood of the defect be characterised 
at any number of  cycles N, by a finite number of  physical parameters q ,  i = 1, 2 . . . . .  n. 



336 

0 .30  

G. S. STAVRAKAKIS AND A. POULIEZOS 

[3_ 

0.15 

O.OC 
5 5 0 0  122 750 

Cycles 

2 4 0  0 0 0  

Figure 7. Absolute crack length prediction error for n w  = 4.  

The failure condition, i.e. the condition that fast fracture will occur because of the defect, 
is at any number of cycles N, 

ac(ql,  q2 . . . .  , q , ) -  a ( q l ,  q2 . . . .  , q,)  < O. 

In general, in order to take into account all sources of variability, the characterising 
parameters of the FCG phenomenon are random and time varying. This fact can be 
assessed very successfully, without the necessary mathematical complications arising from 
physical considerations [2-6, 10], using the linear regression procedure with moving 
window described in Section 4, to update the FCG law parameters after every inspection 
of the actual state of the structure. Moreover, the fast fracture phenomenon, the history 
dependence of FCG and the variability of the FCG physical phenomena can be well 
assessed by the same linear regression method. 

In the FCG modeling method presented here, each specific case is related to the given 
geometry of an element and/or a crack, and should be treated separately. This means 
that the generality of the phenomenological FCG laws relating the crack growth with the 
stress intensity factor range is lost [1, 4, 5, 9, 10]. However, failures of structures occur 
in practice because of a few, and sometimes even only one, propagated defects considered 
the most dangerous. Thus, the generality of the method, when applied to prevent structural 
failure is not lost. 

Moreover, the proposed moving window technique can be used to estimate the para- 
meters of the most frequently used phenomenological FCG laws, as are the Paris-Erdogan 
and Forman's [9]. This can be accomplished by either using a large amount of laboratory 
replications or by updating after on-line inspections. It is well known that the curves of 
log~o ( d a / d N ) v s .  log~o ( A K ) ,  where A K  is the stress intensity factor range, are straight 
lines [1, 9]. Thus, estimation of the parameters (c, m) of the Paris-Erdogan or Forman 
laws, which result in more general structural FCG predictions, can be performed using 
the recursive moving window method of Section 4. The recursive nature of the method 
makes it suitable for on-line inspection data treatment and thus it provides a unique tool 
for fast FCG predictions under any loading and temperature conditions. This is accom- 
plished through the adaptive estimation of the parameters of the FCG model used and 
as a result all the occurring random conditions are taken into account irrespective of 
whether they are known or not. 
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To calculate the probability that fast fracture will occur because of the defect, equations 
(9), (10) and the approximate expressions given in Appendix A may be used, at any 
number of  cycles N. 

The whole computational procedure is very easy to implement in an existing com- 
puterised inspection and failure prediction scheme. 

6. CONCLUSIONS 

The basic problem in structural safety, that is to ensure that an inadmissible failure 
state will not occur during the lifetime of  the structure, is treated in the present paper. 
An attempt to solve the generalised problem could be worthwhile. The state of the structure 
at any number of cycles, i.e. defect size and its critical value, would then be not only 
functions of  the instantaneous thermomechanical loading but functionals depending on 
the entire loading history. 

Linear regression techniques combined with FCG laws of  exponential type with respect 
to the number of  accumulated cycles, can be useful tools to overcome the difficulties of  
the structural integrity problem. 

In particular, the moving window regression method presented here, can be easily 
incorporated in an existing safety monitoring system. In cases where crack length measure- 
ments are available on-line using appropriate hardware equipment, the recursive nature 
of  the method makes it suitable for an integrated automatic safety alarm system. 

The applicability of the moving window regression method is not limited to the simple 
FCG models adopted in this work, but can be easily extended to other well known 
phenomenological  FCG laws for accurate and more general FCG predictions. 

The failure probability of  a structure is possible to be computed in a closed form, easy 
to evaluate at the engineering practice. Experimental FCG data were used to evaluate 
the proposed probability model for calculating the reliable life of structures in which 
crack propagation up to a critical length ac must be tolerated. 
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APPENDIX A 

Approximate  expressions for fast engineering calculation of  the structural reliability 
characterisations, when dealing with the normal distribution are as follows [15]: 

dg(s)= P(S<~s)= l-~p(s)[ ~,=, b, ti+e(s)] (A1) 

where, 

where, 

t = (1 +0.231 6419s) -~, 

bl = 0.319 381 530, 

b3 = 1.781 477 937, 

b5 = 1.330 274 429 

]e(s) ]<7.5  x 10 -s 

b2 = -0 .356 563 782 

b4 = -1.821 255 978 

~b(s)=P(S<-s)=I-0"5 1+ d,s ~ +e(s) 
i=1 

l e ( s ) l  < 1.5 x 10 -7 

dl -- 0"049 867 3470, d2 = 0"021 141 0061 

d3 = 0"003 277 6263, d4 = 3"800 36 x 10 -5 

d s = 4 . 8 8 9 0 6 x 1 0  -5, d r = 0 . 5 3 8 3 0 x 1 0  -5. 

(A2) 

Define, 

and, 

APPENDIX B 

U =  [ul l, 1;I. :1,1 u,(k) ' ' '  u~(k) [.uT(k).] 

y = [ y ( 1 )  . . - y ( k ) ]  r 

Furthermore,  for a moving window of  length nw, define, 

L[ur(k--'nw+l)]u r :,,k ) = [-U(~--k-~n-~v-q--2-)3~'ur(k-nw+l)] U k 

Then, 

f u r (k - nw + 2) t = [_U_(_~_kf__nw._+_2)_] 

=L____:_(_k_+_ii__ 3 L .:(k + 1) ]" 
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The iteration for U~Uk is considered first. 

_..r u r ( k - n w + l )  "] 
U r U k  : [U (  k - n w  + i)Iu"(k, k - n w  + 2)j L-E;(L-7:.:;;,]-$-:~] ] 

= u ( k - n w  + l ) u r ( k  - nw + l ) +  U r ( k ,  k - n w +  2)U(k,  k - n w +  2) 

and, 

where, 

Vkr+tUk+, = [u'r(k, k - n w  +2)lu(k + 1)] r--u-(----k'--k---n-~-L2-)-] 
L u r ( k + l )  -] 

= u ( k  + l ) u T ( k  + l ) + U T ( k ,  k - n w  + 2)U(k,  k - n w +  2) 

= U~UR + u(k + 1)uY(k + 1 ) -  u ( k -  nw + 1)uT(k-- nw + 1) 

=U~Uk+r(k+l)  

r(k + 1) = u ( k +  1)uT(k + 1) - u ( k  - nw + 1)uT(k -  nw + 1) 

Secondly, the iteration for UkTyk is considered. Define [,<,<-..v+,)] 
Yk = " = Ly(k, k - n w + 2 ) J  

L y(k) j 
then, 

Hence 

and, 

where, 

Now, 

Y k + l  = 

y ( k - n . w + 2 )  

[. y ( k - n w + l )  ] 
UkTyk = [u(k - nw + 1)lUr(k, k - nw + 2)] Ly(~-~-n-~v-~_-~)- j 

= u(k - nw + 1 ) y ( k  - nw + 1) + UT(k, k - nw + 2)y(k, k - nw + 2) 

. . .  [y(k, k - n w + 2 ) ' ]  
U~+,yk+, = [Ur(k,  k - n w + 2 ) l u ( k +  t ) l  L----y~-3~iy----  j 

= u ( k +  1)y(k+ 1) + Ur(k,  k -  nw + 2)y(k, k - n w + 2 )  

= U~'yk + u ( k +  l )y(k  + I) - u ( k -  nw + 1 ) y ( k -  nw + 1) 

= UkTyk+8(k+ 1) 

8(k + 1) = u(k + 1)y(k + 1) - u(k - nw + 1 )y (k  - nw + I). 

0 ( k +  1) r -i r = (Uk+lUk+l) Uk+lYk+l 
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Defining 
P(k+ 1) r -I = (Uk.lUk÷l) 

which is the covariance of the estimate O(k+ 1), we get 

0(k+ l) = P (k+  1)[Ukryk + 8 ( k +  1)] 

= P(k + 1)[P-'(k)0(k) + 8(k + 1)] 

= P ( k +  1)[(P-l(k + 1) - F ( k +  1))0(k) + 8(k + 1)] 

= 6 ( k )  - P ( k  + 1 ) [ F ( k  + 1 ) 6 ( k )  - 8 ( k  + 1)] 

and, 

(B~) 

P- ' (k  + 1) = P - ' ( k ) + r ( k +  1). (B2) 

Equations (B1) and (B2) form the moving window ordinary least squares estimator 
(MWOLS). Note that in this simple case a further reduction of (B2) is not needed since 
only one inversion is required. 


