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Abstract

This paper presents a method for extracting features in the wavelet domain from the vibration velocity signals of washing

machines, focusing on the transient (non-stationary) part of the signal. These features are then used for classification of the state

(acceptable-faulty) of the machine. The performance of this feature set is compared to features obtained through standard Fourier

analysis of the steady-state (stationary) part of the vibration signal. Minimum distance Bayes classifiers are used for classification

purposes. Measurements from a variety of defective/non-defective washing machines taken in the laboratory as well as from the

production line are used to illustrate the applicability of the proposed method. r 2002 Published by Elsevier Science Ltd.
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1. Introduction

Conventional Fourier analysis provides averaged
spectral coefficients which are independent of time
(Ambardar, 1995). They represent the frequency com-
position of a random process which is assumed to be
stationary. However, many random processes are
essentially non-stationary (S !olnes, 1997). For example,
the sound pressure recorded from speech and music is
non-stationary (Qian and Chen, 1996); in vibration
monitoring, the occurrence of transient impulses makes
the recorded signal non-stationary (Newland, 1994a, b;
Tamaki et al., 1994; Wang and McFadden, 1994;
Wilkinson and Cox, 1996); vibration during the start-
up of an engine is non-stationary (Kim et al., 1995), and
so on.
The basis functions used in Fourier analysis, sine

waves and cosine waves, are precisely located in
frequency, but their duration spans the entire time axis.
The frequency information of a signal calculated by the
classical Fourier transform is an average over the entire

duration of the signal. Thus, if there exists a local
transient over some small interval of time in the lifetime
of the signal, the transient will contribute to the Fourier
transform but its location on the time axis will be
lost (Saito, 1994). Although the short-time Fourier
transform (Qian and Chen, 1996) overcomes the
time location problem to a large extent, it does not
provide multiple resolution in time and frequency,
which is an important characteristic for analyzing
transient signals containing both high- and low-
frequency components (Lee and Schwartz, 1995; Qian
and Chen, 1996).
Wavelet analysis overcomes the limitations of Fourier

methods by employing analysis functions that are local
both in time and in frequency (Galli et al., 1996; Vetterli
and Kovacevic, 1995). These wavelet functions are
generated in the form of translations and dilations of a
fixed function, the so-called mother wavelet. The focus
of this paper is to present the basic ideas of discrete
wavelet analysis and to demonstrate the application of
wavelet analysis for feature extraction, in conjunction
with statistical digital signal processing techniques
(Hayes, 1996; Krauss et al., 1994), to the problem of
classification of the state of washing machines based on
vibration velocity transient signals.
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2. Basic ideas of wavelet analysis

2.1. Wavelet analysis

Wavelet analysis breaks up a signal into shifted and
scaled versions of the original (or mother) wavelet
(Saito, 1994). The analyzing (mother) wavelet deter-
mines the shape of the components of the decomposed
signal. Wavelets must be oscillatory, must decay quickly
to zero, and must have an average value of zero. In
addition, for the discrete wavelet transform considered
here, the wavelets must be orthogonal to each other.
There are several families of wavelets such as Haar

wavelets, Daubechies wavelets, biorthogonal, Coifflets,
etc. (Misity et al., 1996; Strang and Nguyen, 1996). The
Daubechies family is often represented by DN, where N

is the order, or the size of the mother wavelet, and D
stands for the ‘‘family’’ of wavelets. This family has been
used extensively, since the maximum of the signal energy
is contained in a limited number of coefficients in
Daubechies wavelets. In this work the D4 wavelet is
used, which captures well the characteristics of the
vibration velocity signal.

2.2. Scaling functions and wavelet functions

The dilation equations may be used to generate
orthogonal wavelets. The scaling function jðtÞ is a
dilated (horizontally expanded) version of jð2tÞ: The
dilation equation in general has the form:

jðtÞ ¼ c0jð2tÞ þ c1jð2t � 1Þ

þ c2jð2t � 2Þ þ c3jð2t � 3Þ: ð1Þ

For the Daubechies D4 wavelet its coefficients have
values:
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ffiffiffi
3
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Þ=4

ffiffiffi
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p
; ð2Þ
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ffiffiffi
3

p
Þ=4

ffiffiffi
2

p
; ð3Þ

c2 ¼ ð3�
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Thus, a particular family of wavelets is specified by a
particular set of numbers, called the wavelet filter

coefficients. The above set of numbers c0; c1; c2; c3 is
called the D4 wavelet filter coefficients.
It is not possible in general to solve directly for jðtÞ;

the obvious approach is to solve for jðtÞ iteratively so
that jjðtÞ approaches jj�1ðtÞ; where,

fjðtÞ ¼ c0fj�1ð2tÞ þ c1fj�1ð2t � 1Þ

þ c2fj�1ð2t � 2Þ þ c3fj�1ð2t � 3Þ: ð6Þ

Fig. 1 shows the scaling function for the D4 wavelet
that is obtained from this iteration process, assuming

the initial scaling function j0ðtÞ equals 1 for 0pto1 and
0 elsewhere.
The D4 wavelet function wðtÞ for the four-coefficient

scaling function defined in (1) can be computed as

wðtÞ ¼ � c3fð2tÞ þ c2fð2t � 1Þ

� c1fð2t � 2Þ þ c0fð2t � 3Þ ð7Þ

and is shown in Fig. 2.
In general, for an even number M of wavelet filter

coefficients ck; k ¼ 1;y;M � 1; the scaling function is
defined by

fðtÞ ¼
XM�1

k¼1

ckfð2t � kÞ ð8Þ

and the corresponding wavelet is derived as

wðtÞ ¼
XM�1

k¼1

ð�1Þkckfð2t þ k � M þ 1Þ: ð9Þ

It is observed that the scaling function, viewed as a
filter’s impulse response, has a low-pass form, whereas
the wavelet function has a high-pass form. Thus, the
wavelet function is essentially responsible for extracting

Fig. 1. Scaling function jðtÞ for the D4 wavelet after 8 iterations.

Fig. 2. D4 wavelet function after 8 iterations.
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the detail (high-frequency components) of the original
signal.

2.3. Continuous wavelet transform

The continuous wavelet transform (CWT) of a signal
sðtÞ (Strang and Nguyen, 1996) is defined as the integral
over time of sðtÞ multiplied by the scaled and shifted
versions of the wavelet function wðtÞ:

CWTða; bÞ ¼
1ffiffiffiffiffi
jaj

p
Z

sðtÞw
t � b

a

� �
dt; aa0: ð10Þ

The parameter a represents the scale index that is
the reciprocal of the frequency. The parameter b

indicates the time shifting (or translation). Suppose
that wðtÞ is centered at time zero and frequency o0:
Recall that this signal is highly concentrated both
in time and frequency. Then, its dilation and
translation wða�1ðt � bÞÞ is centered at time b and
frequency o0=a; respectively. Consequently, the trans-
form CWTða; bÞ; as inner product of sðtÞ and
wða�1ðt � bÞÞ; reflects the signal’s behavior in the vi-
cinity of (b;o0=a). Therefore it could also be thought
of as a function of time and frequency as
CWTða; bÞja¼ðo0=oÞ; b¼t ¼ CWT ðo0=oÞ; t

� �
.

The result of the CWT is a function of the wavelet

coefficients CWTða; bÞ; which is a function of scale and
position. Multiplying each value CWTða; bÞ by the value
wððt � bÞ=aÞ yields the portion of the signal sðtÞ at the
corresponding scale and position parameters ða; bÞ: The
exact reconstruction wavelets allow the perfect recon-
struction of the original signal sðtÞ: In this case the
wavelet function wðtÞ has to satisfy the admissibility

condition given by

CW ¼
1

2p

Z
jW ðoÞj2

joj
dooN; ð12Þ

where W ðoÞ is the Fourier transform of the wavelet
function wðtÞ: Condition (12) implies W ðoÞ ¼ 0: In other
words, the wavelet function has a bandpass behavior.
Once wðtÞ meets the admissibility condition, the original
signal sðtÞ can be reconstructed from

sðtÞ ¼
1

CW

Z Z
1

a2
CWTða; bÞw

t � b

a

� �
da db: ð13Þ

Hence, the product CWTða; bÞwððt � bÞ=aÞ is often
referred to as the reconstructed signal at scale a and
position b:

2.4. Discrete wavelet transform

Calculating the wavelet coefficients as a continuous
function of scale and translation is quite complicated in
general. It turns out that if scales and positions are
chosen based on powers of two in a dyadic structure
then the analysis becomes much more efficient and just

as accurate. Thus, the discrete wavelet transform (DWT)
is defined as (Qian and Chen, 1996)

DWTðj; kÞ ¼ CWTða; bÞja¼2j ;b¼k2j

¼ 2j

Z
sðtÞwð2j t � kÞ dt ð14Þ

for jAZ; kAZ:
The DWT allows a signal sðtÞ to be decomposed into a

series of wavelet coefficients. Using these coefficients,
one can exactly reconstruct the original signal as

sðtÞ ¼
X
jAZ

X
kAZ

DWTðj; kÞwj;kðtÞ; ð15Þ

where wj;kðtÞ ¼ wð2j t � kÞ:
The wavelet coefficients DWTðj; kÞ represent the

amplitudes of the contributing wavelets in a similar
manner as that the Fourier series coefficients represent
the amplitudes of the various sine and cosine terms in
the classical Fourier analysis.

2.5. Details and approximations

Unlike conventional techniques, the wavelet analysis
produces a family of hierarchically organized decom-
positions. The selection of a suitable level for the
hierarchy depends on the signal and the task to be
performed. Often the level is chosen based on a desired
low-pass cutoff frequency.
At each level j; is built the j-level approximation,

Aj ; or the approximation at level j; and a deviation
signal called the j-level detail, Dj ; or the detail at level j

(Misity et al., 1996). The original signal could
be considered as the approximation at level 0, denoted
by A0: The words ‘‘approximation’’ and ‘‘detail’’ are
justified by the fact that A1 is an approximation of A0

taking into account the ‘‘low frequencies’’ of A0;
whereas the detail D1 corresponds to the ‘‘high
frequency’’ correction. The organizing parameter, the
scale a; is related to level j by a ¼ 2j : If resolution is
defined as 1=a; then the resolution increases as the scale
decreases. The greater the resolution, the smaller and
finer are the details that can be accessed.
The decomposition process can be iterated, with the

approximations being decomposed successively, so that
one signal is broken down into many lower-resolution
components. This is called the multilevel wavelet

decomposition. Fig. 3 graphically represents this hier-
archical decomposition:
Eq. (15) for the discrete wavelet expansion of a signal

sðtÞ can be employed in order to define the detail at level
j: Let j be fixed and sum over the displacement k: A
detail Dj is nothing more than the function

ðdefinition of the detail at level jÞ

DjðtÞ ¼
X
kAZ

DWTðj; kÞwj;kðtÞ: ð16Þ
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Now let the sum be over j: The signal is the sum of all
the details:

ðthe signal is the sum of its detailsÞ

sðtÞ ¼
X
jAZ

Dj :
ð17Þ

The details have just been defined. At reference level
J; there are two types of detail signals. Those associated
with indices jpJ correspond to the scales a ¼ 2jp2J

which are the fine details. The others, which correspond
to j > J; are the coarser details. These latter signals are
grouped into

ðthe approximation at level JÞ AJ ¼
X
j>J

Dj ð18Þ

which defines what is called an approximation of the
signal sðtÞ: The details and an approximation at level J

have thus been created. The equality

ðSeveral decompositionsÞ sðtÞ ¼ AJ þ
X
jpJ

Dj ð19Þ

signifies that sðtÞ is the sum of its approximation AJ and
its fine details. From the previous formula, it is obvious
that the approximation signals are related from level to
level by

ðlink between AJ�1 and AJ Þ AJ�1 ¼ AJ þ DJ : ð20Þ

2.6. The fast wavelet transform (FWT) algorithm

In 1988, Mallat (Misity et al., 1996) proposed a fast
wavelet decomposition and reconstruction algorithm.
The Mallat algorithm for DWT is in fact a classical

scheme in the signal processing community, known as a
two-channel subband coder using conjugate quadrature
filters or quadrature mirror filters (QMF) (Masters,
1995). Mallat’s algorithm solves for the detail and
approximation signals without finding the wavelet
functions in Eq. (14). Mallat’s algorithm accomplishes
for discrete wavelet analysis what Cooley’s and Tukey’s
FFT algorithm accomplishes for Fourier analysis. Its
steps, in short, are:

* The decomposition algorithm starts with the signal
sðtÞ; and computes the values of the decomposed
signals A1 and D1; then those of A2 and D2; and so
on.

* The reconstruction algorithm called the inverse

discrete wavelet transform (IDWT), starts with the
signals AJ and DJ and uses them to compute AJ�1:
Then from AJ�1 and DJ�1 it computes AJ�2 and so
on.

* Given a signal vector sðtÞ of length n; the DWT
proceeds in log2 n steps at most. The first step starts
from sðtÞ and produces the following sets of
coefficients: the approximation coefficients vector
cA1 and detail coefficients vector cD1: These coef-
ficients are directly related to the DWTðj; kÞ coef-
ficients. They are obtained by convolving sðtÞ with the
low-pass filter LoF D for the approximation, and
with the high-pass filter HiF D for the detail signals,
followed by dyadic decimation (down-sampling).
Fig. 4 shows a diagram of this procedure.

Let the length of each filter be equal to 2N: If n ¼
lengthðsðtÞÞ; the signals F and G are of length n þ 2N � 1
and the coefficient vectors cA1 and cD1 are of length
Iððn � 1Þ=2Þmþ N:
The next step splits the approximation coefficients

cA1 into two parts, using the same scheme, producing
cA2 and cD2; and so on, as shown in Fig. 5.
Thus, the wavelet decomposition of the signal sðtÞ

analyzed at level j has the structure ½cAj ; cDj ;y; cD1�:
This structure contains, for j ¼ 3; the terminal nodes of
the wavelet decomposition tree shown in Fig. 6.
In the reconstruction phase, starting from cAj and

cDj ; the IDWT reconstructs cAj�1: Thus, it inverts the
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Fig. 3. Multilevel wavelet decomposition of a signal sðtÞ.
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decomposition step by inserting zeros between the
samples of cAj and cDj and convolving the result with
the corresponding reconstruction filters. This phase is
shown in Fig. 7.

3. The use of wavelet analysis in pattern recognition

3.1. Fundamental concepts of pattern recognition

The problem of pattern recognition can be seen as one
of classifying a group of objects on the basis of certain
subjective similarity measures. Those objects classified
into the same pattern class usually have some common
properties. The classification requirements are subjec-
tive, since different classification occurs under different
properties of the features (Banks, 1990; Tou and
Gonzalez, 1974).
Given any particular pattern recognition problem, the

first task is to choose a discretization method in order to
obtain a measurement vector for each sample pattern. A
major difficulty often arises when using these discretiza-
tion methods, since the dimension of the measurement

space is usually very large. It is therefore common
practice to try to reduce this dimension by mapping the
measurement space into a feature space, while retaining
as many properties or features of the original samples as
possible. This part of pattern recognition is called

feature selection (or preprocessing) and results in a set
of samples from the feature space (Looney, 1997; Tate,
1996).

3.2. Feature extraction using wavelets

The wavelet transform may be used to represent
efficiently the localized features of interest in a signal,
which makes it an ideal tool for extraction of features
and classification (Saito, 1994). It can be used as a
filtering technique for removing the high-frequency
components from the data, or as a method for
representing shape information in a succinct way
(Ogden, 1997). Alternatively, it has excellent data
compression properties.
The use of the wavelet transform does not imply

increase of the computational cost of the algorithm, as
compared with the use of the Fourier transform. More
specifically, for a signal of length N the fast wavelet
transform has computational complexity of the order
OðNÞ; whereas the fast Fourier transform has complex-
ity of the order OðN log2 NÞ (Galli et al., 1996; Ogden,
1997; Wilkinson and Cox, 1996).
In this paper, we consider signals that contain both

transient and steady-state parts and combine features
from classification from both parts. The analysis of the
steady-state part has been well established. In our work
we employ the Fourier transform on this part of the
signal and extract features that relate to its stationary
performance. More specifically, we consider the first
eight odd harmonics of the steady-state vibration signal
as potential features for classification. Alternatively, the
transient part of the signal has not been studied for its
potential in classification. In this paper, we also consider
features for classification that are obtained from the
wavelet coefficient vectors of the transient state of the
signal. The wavelet transform algorithm operates by
transforming the original signal vector (only its transient
part) into a new one, which is filled sequentially with the
wavelet coefficients of the different levels. The proposed
algorithm for feature extraction from the transient part
proceeds as follows:

cAj
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We first compute the FWT of the transient
state signal. The Daubechies wavelet function 4 (D4)
with a resolution of five levels (levels 1, 2, 3, 4, 5)
has been proven to be a good choice though this is
not binding. The coefficients of all the components of
fifth-level decomposition (that is, the fifth-level approx-
imation and the first five levels of detail) are
returned concatenated into one vector, C : This
vector is then split into the detail wavelet coefficients

at individual levels, cD1; cD2; cD3; cD4; cD5 and
the approximation wavelet coefficients, cA5 at level 5.
These signals may exhibit some similarity or
abrupt variations. In order to express signal
similarity, the autocorrelation function is used, whereas
a form of maximum deviation on smoothed signals to
express rapid changes in the signal structure is exploited.
These measures and the resulting features are presented
next.
If xðnÞ is a sequence (vector) of length N; the sample

autocorrelation function is calculated from

RxxðlÞ ¼
XN�jkj�1

n¼i

xðnÞxðn � lÞ; ð21Þ

where i ¼ l; k ¼ 0 for lX0; and i ¼ 0; k ¼ l for lo0:
The index l is the time shift (or lag) parameter. We
denote by AcDi the autocorrelation of the signal cDi.
The autocorrelation function may be viewed as a

measure of similarity or coherence, between a signal xðnÞ
and its shifted version (Ambardar, 1995). Clearly, under
no shift, the two versions of the signal ‘‘match’’, yielding
the maximum for the autocorrelation function. But with
increasing shift, it would be natural to accept the
similarity and hence, the correlation between xðnÞ and its
shifted version to decrease. As the shift approaches
infinity, all traces of similarity vanish and the auto-
correlation decays to zero. The autocorrelation function
is symmetric about the origin where it attains its
maximum value.
For smoothing rapid fluctuations a signal-averaging

filter is used. A signal-averaging filter is also called a
smoothing filter or moving average filter (Masters, 1995).
This is done as follows:
Let xðnÞ; yðnÞ be the input and output signals,

respectively. For each data point kA½x;N � x�of xðnÞ;
the value

yðkÞ ¼
Pkþm

l¼k�m jxðlÞj
2m

of yðnÞ is computed, where x is the starting data point of
xðnÞ; upon which the filter is operated, N the length of
input signal, and 2m the window width of the input
signal. If Si denote the result of the filtering on the Cdi
signals then as a measure of abrupt signal deviation, the
quotients min jSij=max jSij may be used.
Finally, sample variances and sample means of

the cDi and AcDi signals computed by their usual

formulae, i.e.,

%x ¼
1

n

Xn

i¼1

xi; ð22Þ

s2x ¼
1

n

Xn

i¼1

ðxi � %xÞ2 ð23Þ

may be added to the feature vector.

4. Case study: on-line quality control of washing

machines

The aforementioned ideas have been successfully
applied to the on-line quality control of washing
machines. This application was carried out in the
framework of the MEDEA project (MEDEA Final
Report, 1999), a European Community funded project
by the Standards, Measurement and Testing (SMT)
action. The project was carried out by five European
partners including AEA (Italy), MIT (Germany),
CEA-LETI and CSO-Mesure (France), Universita degli
Studi Ancona (Italy) and the Technical University of
Crete. The project aimed at designing and building a
prototype of an automatic system that could detect a
range of mechanical defects in washing machines at the
production line level. The defects of interest are reported
in Table 1.
These five classes of defects ðZ; B; P; M ; HÞ are the

most common according to a survey carried out in one
of the major European Fairs, amongst all leading
manufacturers.
Tests were carried out using two main sets of data.

One was obtained in the laboratory of the Department
of Mechanics of the University of Ancona, Italy (Paone
et al., 1999), while the second was obtained at the
prototype setup on the premises of AEA, Italy who is
the exploiter of the final product. The two sets come
from different types of washing machines. Originally, 11
points were chosen as candidates for possible reference
points that could carry significant information in their
vibration velocity signals regarding the health state of
the washing machine. These points are shown in Fig. 8.

Table 1

Common defects present in washing machines (Domotecnica Ap-

pliances Fair, Cologne)

Defect class definitions

Z No defect

B Electric motor clamping screws (released belt)

H Releasing of the shock absorber

M Use of different type of springs

P Pulley (distorted)
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After preliminary investigation three points were chosen
to test the proposed algorithms, namely 2, 8 and 9. This
was done in order to reduce the computational
complexity and the cost relevant to the measurement
procedure. In both sets of data, two types of signals were
measured: the vibration velocity at each measurement
point and the rotational velocity of the washing
machine’s drum. This last measurement is used to
separate the transient from the steady-state part of the
vibration velocity signal.
In this study, three types of input features are

extracted and compared in classification. More specifi-
cally, we consider:

* Fourier transform features from the steady-state
(stationary) part of the signal, i.e. amplitudes at 8
odd harmonics of drum rotation frequency (Tselentis,
1998) (dimension of feature vector: 8 per point).

* Wavelet transform features from the transient (non-
stationary) part of the signal, i.e. those described in
Section 3.2 (dimension of feature vector: 10 per
point).

* A combination of the above (dimension of feature
vector: 18 per point).

Laser accelerometers are quite costly, and although
part of the project involved the development of cheap
sensors, the possibility of using fewer than three sensors
was also investigated, since this could lead to a
reduction of the total cost of the quality control system.
Classification performance was judged using a ‘‘leave-

one-out’’ procedure, as follows:

The ratio p=(machines correctly classified/N) then
gives an indication of the relative merit of each
combination.
The concept of pattern classification may be

expressed in terms of the partition of the feature
space (a mapping from feature space to decision space).
Suppose that N features are to be measured from
each input pattern. Each set of N features can be
considered as a point in the N-dimensional feature
space Ox: The problem of classification is to assign
each possible vector or point in the feature space to a
proper pattern class. This can be interpreted as a
partition of the feature space into mutually exclusive
regions, where each region corresponds to a particular
pattern class (Barschdorff, 1991; Gose et al., 1996;
Schalkoff, 1992).
The adopted classifier uses the following logic:

assuming a normal distribution of pattern vectors in
the feature space, the probability that a feature vector f
belongs to class jð¼ 1;y; kÞ is given by (Barschdorff,
1991),

pðf jjÞ ¼
1

ðð2pÞn 	 det½C j�Þ1=2


 exp½�0:5 	 ðf � mjÞT½C j��1ðf � mjÞ�

while the likelihood that f originated from class j is
given by

cj ¼
½pðf jjÞ 	 pðjÞ�

pðf Þ
; ð24Þ

where pðjÞ is the n-dimensional multivariable prob-
ability distribution of class j with mean mj and
covariance C j and pðf Þ denotes the prior probability
that the feature vector belongs to class j: In this way, the
fact that fault modes are less likely to occur is
taken explicitly into account. If features are uncorre-
lated and normally distributed, Eq. (24) is easily
calculated using

cj ¼ ln½pðjÞ� � 1
2
ln det½C j� � 1

2
ðf � mjÞT½C j��1ðf � mjÞ:

Left side panel Front panel Rear panel Right side panel
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Fig. 8. The set of measurement points on the washing machine.

for each machine k out of N

train the classifier using N � 1 machines and leaving
machine k out
present machine k to the classifier

end
calculate machines correctly classified
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A fuzzy-like classifier can be obtained if the likelihoods
are normalized,

Lk ¼
1Pk

j¼1 cðjÞ

cð1Þ

??

?

??

cðkÞ

2
6666664

3
7777775
:

The ith element of this vector is the likelihood that the
machine belongs to class i: Therefore, the decision is
made that the machine belongs to the class that has the
maximum likelihood

ðclass indexÞ ¼ max
j

ðcðjÞÞ:

The first set of data, extracted from measurements taken
in the laboratory environment, exhibit distinct bound-
aries for transient and steady-state parts of the
rotational velocity as shown in Fig. 9.
As a result proper statistical algorithms could be used

to separate the signal into its transient and steady-state
part (Paone et al., 1999).
The relevant parts (transient and steady state) are

then used into the feature extraction algorithms to
produce Fourier and wavelet coefficients. The data are
sampled at 2 kHz producing data files approximately
containing 40 000 points for each sensor. The Fourier
spectrum for the steady-state part has been restrained to
frequencies that carry significant information, which is

up to 150Hz. Furthermore, for the transient part,
Figs. 10–12 show plots of approximation, detail wavelet
coefficients, right-half parts of autocorrelation functions
and moving average filtered detail coefficients of a
typical washing machine vibration signal.
The total number of machines for the five points were

200 with class list

Cj ¼ fZ;B;P;M;Hg:

Prior probabilities for each class are calculated using
the simple frequency formula (for the case where a
machine type Z is left out for generalization):

pðjÞ ¼
39

199

40

199

40

199

40

199

40

199

� �
:

If only detection of defective (X ) or non-defective
machine (Z) is required, the class list is

Cj ¼ fZ;Xg;

where

X ¼ fB;P;M ;Hg

with prior probabilities (in the case where a type Z is left
out)

pðjÞ ¼
39

199

160

199

� �
:

Fig. 9. Rotational velocity, separation index and stationary vibration velocity of a typical washing machine.
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The results of the tests on these data are summarized in
Tables 2–7.
The second set of data, extracted from measurements

taken in the production line, do not exhibit distinct
boundaries for transient and steady-state parts of the
rotation velocity as shown in Fig. 13.
As a result proper statistical algorithms could not

be used to separate the signal, which was therefore
split using a heuristic, and rather arbitrary, method.
The same feature extraction and classification
procedures, as for the first set of data were applied
to each part. The data are sampled at 10 kHz, producing
data files approximately containing 160 000 points
for each sensor. The Fourier spectrum for the
steady-state part has again been restrained to
frequencies up to 150Hz. The frequency and wavelet
domain features are extracted as before, through the
proposed approach. The results are summarized in
Tables 8–10.
Interpretation of the results yields the following

general remarks. The best overall result, 99.5%, was
obtained using two measurement points (2, 8) and
Fourier transform features for discriminating amongst
five classes (Table 2). This is an excellent performance,
as it really made only one error in 200 samples. The best
result using wavelet features, 85.5% was obtained using
again the same two points but for discriminating among
two classes (Table 5). Both these results were obtained
using laboratory data, which is to be expected since
most of the analysis was done using this set. The
combination of Fourier and wavelet features increased
the performance of the wavelet features (97%, Table 7)
but still remained below the best score. The same
behavior was observed on the production line data
(Tables 8–10) but with worse results due to the
aforementioned reasons.
The reduced performance of the features from the

transient part of the signal is due to the high irregularity
of the vibration signal at its transient phase. At this
phase, the local features derived through the wavelet
transform for each class of machines show large
deviations in both their magnitudes and the locations
they appear. Thus, features from different machine
classes are inter-mixed, so that classes in this phase are
not well separated in the feature space. To improve the
performance of this type of features one needs bigger
training sets of data for training the classifiers. In other
words, we need to cover the feature space of each class
more densely in the transient stage than in the steady-
state operation. This is supported by the fact that the
performance of the classifier used in this paper improves
consistently with the size of the training set in the
transient stage.
To summarize, wavelet transform features showed a

promising performance when used as classification
characteristics, but their use must always be judged

Fig. 10. Plots of transient vibration velocity signal S; vector of

approximation cA5 and detail wavelet coefficients

cD1; cD2; cD3; cD4; cD5 for a sample washing machine.

Fig. 11. Plots of right-half parts of the autocorrelation functions AS,

AcA5, AcD5, AcD4, AcD3, AcD2, AcD1 for a sample washing

machine.

Fig. 12. Plots of cD1, cD2 signals with their outputs S1, S2

respectively after moving average filtering for a sample washing

machine.
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Table 2

Classification results using Fourier transform features on laboratory data (discrimination amongst five classes)

Class Machines in sample Point [8] Points [2, 8] Points [2, 8, 9]

Correctly classified % Correctly classified % Correctly classified %

Z 40 31 0.775 40 1 40 1

B 40 40 1 40 1 40 1

P 40 33 0.825 40 1 38 0.950

M 40 38 0.950 40 1 39 0.975

H 40 40 1 39 0.975 39 0.975

Total 200 182 0.910 199 0.995 196 0.980

Table 3

Classification results using Fourier transform features on laboratory data (discrimination amongst two classes)

Class Machines in sample Point [8] Points [2, 8] Points [2, 8, 9]

Correctly classified % Correctly classified % Correctly classified %

Z (healthy) 40 35 0.875 34 0.850 23 0.575

BPMH (faulty) 160 154 0.9625 160 1 160 1

Total 200 189 0.945 194 0.970 183 0.915

Table 4

Classification results using wavelet transform features on laboratory data (discrimination amongst five classes)

Class Machines in sample Point [8] Points [2, 8] Points [2, 8, 9]

Correctly classified % Correctly classified % Correctly classified %

Z 40 11 0.275 31 0.775 33 0.825

B 40 33 0.825 27 0.675 20 0.500

P 40 15 0.375 21 0.525 17 0.425

M 40 17 0.425 23 0.575 18 0.450

H 40 26 0.6500 24 0.600 23 0.575

Total 200 102 0.510 126 0.630 111 0.555

Table 5

Classification results using wavelet transform features on laboratory data (discrimination amongst two classes)

Class Machines in sample Point [8] Points [2, 8] Points [2, 8, 9]

Correctly classified % Correctly classified % Correctly classified %

Z (healthy) 40 7 0.175 19 0.475 9 0.225

BPMH (faulty) 160 153 0.9563 152 0.950 159 0.9938

Total 200 160 0.800 171 0.855 168 0.840

Table 6

Classification results using Fourier+wavelet transform features on laboratory data (discrimination amongst five classes)

Class Machines in sample Point [8] Points [2, 8] Points [2, 8, 9]

Correctly classified % Correctly classified %

Z 40 31 0.775 40 1 Numerical instability problems

B 40 40 1 31 0.775

P 40 33 0.825 27 0.675

M 40 38 0.950 34 0.850

H 40 40 1 27 0.675

Total 200 182 0.910 159 0.795
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against results obtained by classical Fourier transform
features.

5. Conclusions

In this paper it is investigated that the applicability of
features extracted from wavelet coefficients in the

Table 7

Classification results using Fourier+wavelet transform features on laboratory data (discrimination amongst two classes)

Class Machines in sample Point [2] Points [2, 8] Points [2, 8, 9]

Correctly classified % Correctly classified %

Z (healthy) 40 34 0.850 6 0.150 Numerical instability problems

BPMH (faulty) 160 160 1 159 0.9938

Total 200 194 0.970 165 0.825
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Fig. 13. Rotational velocity, steady state and transient part of vibration velocity of a typical washing machine from the production line.

Table 8

Classification results using Fourier transform features on production

line data (discrimination amongst two classes)

Class Machines in sample Points [2, 8, 9]

Correctly classified %

Z (healthy) 52 41 0.7885

BPW (faulty) 61 51 0.8361

Total 113 92 0.8142

Table 9

Classification results using wavelet transform features on production

line data (discrimination amongst two classes)

Class Machines in sample Points [2, 8, 9]

Correctly classified %

Z (healthy) 52 30 0.5769

BPW (faulty) 61 46 0.7541

Total 113 76 0.6726

Table 10

Classification results using Fourier+wavelet transform features on

production line data (discrimination amongst two classes)

Class Machines in sample Points [2, 8, 9]

Correctly classified %

Z (healthy) 52 36 0.6923

BPW (faulty) 61 54 0.8852

Total 113 90 0.7965
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problem of pattern recognition. These features can be
used on their own or in conjunction with features
extracted from the Fourier transform. The proposed
method is tested on real data taken from a production
line of washing machines. The aim is to classify
produced machines according to their mechanical health
state. Results show a promise in the use of wavelet-born
features, but their performance is inferior to that of
Fourier-based features. This could be due to the
transient signal not carrying separation information or
the inappropriateness of the proposed features. Further
research will help in clarifying these issues.
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