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PREFACE

This book was originally written as an informal mimeographed text for
one of the so-called ““ Out-of-Hour ” courses at Bell Telephone Labora-
tories. - The bulk of the material was prepared in 1938 and 1939 and was
given in course form to my colleagues there in the winters of 1939-40
and 1940—41. During the war, however, the text has also been supplied
as a reference work to a considerable number of other laboratories en-
gaged in war research, The demand for the text on this basis was un-
expectedly heavy and quickly exhausted the original supply of mimeo-
graphed copies. It has consequently been decided to make the text
more widely available through regular channels of publication.

In revising the material for publication, the original theoretical dis-
cussion has been supplemented by footnote references to other books and
papers appearing both before and after the text was first written. In
addition, an effort has been made to simplify the theoretical treatment
in Chapter IV, and minor editorial changes have been made at a number
of points elsewhere. Otherwise, however, the text is as it was originally
written. ’

The book was first planned as a text exclusively on the design of feed-
back amplifiers. It shortly became apparent, however, that an extensive
preliminary development of electrical network theory would be necessary
before the feedback problem could be discussed satisfactorily. With the
addition of other logically related chapters, this has made the book pri-
marily a treatise on general network theory. The feedback problem is
still conspicuous, but the book also contairs material on the design of
non-feedback as well as feedback amplifiers, particularly those of wide
band type, and on miscellaneous transmission problems arising in wide
band systems generally. Much of this is material which has not hitherto
appeared in previous texts on network theory. On the other hand, trans-
mission line and filter theory, which are the primary concerns of most’
earlier network texts, are omitted.

Two further explanatory remarks may be helpful in understanding the
book. The first is the fact that, although the feedback amplifiers en-
visaged in most of the discussion are of the conventional single loop,
absolutely stable type, the original plan for the text called for two final
chapters on design methods appropriate for multiple loop and condition-
ally stable circuits. Invincible fatigue set in before these chapters could

iii :



iv PREFACE

be written. In anticipation of these chapters, however, the preliminary
analysis in the early portions of the book was carried forward in more
general terms than would otherwise have been necessary. In Chapters
IV-VI, particularly, this appreciably complicates the discussion, and the
reader interested only in conventional feedback amplifiers can afford to
omit the more difficult portions of these chapters.

The second general remark concerns the apparently unnecessary re-
finement to which the design methods described in the book are sometimes
carried. This is explained by the fact that the amplifiers of particular
interest to the class for which the notes were originally prepared were
those used as repeaters in long distance telephone systems. Since a long
system may include many repeater points, the cumulative effect of even
quite small imperfections in individual amplifiers may be serious. Thus,
the amplifier design requires more care than might be justified in an ordi-
nary engineering application.

Under the circumstances in which the text was originally prepared, it
naturally benefited by suggestions from many sources. 1 am indebted
for such help to too many of my colleagues to enumerate individually.
Special mention should, however, be made of Mrs. S. P. Mead for her
assistance in the final preparation of the material for publication. It is
a particular pleasure also to express my thanks to Dr. Thornton C. Fry,
without whose support and encouragement the book could scarcely have
been written.

H. W. Bobe
Bell Telephone Laboratories, Inc.
New York City
April 1945
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CHAPTER 1
Mesa anp NopaL Equartions ror an Active CIRCUIT

1.1 Introduction

THE networks to be considered consist of ordinary lumped inductances,
resistances, and capacities, together with vacaum tubes. The accessible
terminals of the vacuum tubes will be taken as the grid, plate, and cathode.
Auxiliary electrodes, such as a suppressor or screen grid, are thus ignored,
and the analysis assumes, in effect, that they are grounded to the cathode
at signal frequencies. For purposes of discussion the tubes will be replaced
by equivalent structures consisting of ordinary circuit elements connected
between the accessible terminals, together with a source of current or volt-
age to represent the amplification of the tube. This ignores such effects
as transit time and distributed inductance in the wires inside the
tube envelope, which may appear in physical tubes at sufficiently high
frequencies.

It will be assumed throughout that all the elements are linear. This
chapter is intended principally as a recapitulation of the conventional
theory for networks including vacuum tubes in a form which can be used
as a foundation for the chapters to follow.*

1.2. Branch Equations for a Passive Circuit

It is simplest to begin by ignoring the active elements in the circuit. The
network can then be regarded as an arrangement of individual branches,
which may include any combination of the elements R, C, and L in series,
connected together at various junctions or nodes. An example is shown by
Fig. 1.1. The circuit contains six branches, as indicated by the subscripts
a - - - f, and four nodes represented by the points A4 - -+ D. Generators to
furnish the driving forces on the circuit are shown in three of the branches.

* A good general reference to the mesh analysis of passive networks is Guillemin
“ Communication Networks,” Vol. I. See also Shea * Transmission Networks and
Wave Filters ” for a brief discussion emphasizing the stock theorems, such as the
superposition theorem, reciprocity theorem, and Thévenin’s theorem, which follow
readily from the mesh analysis. The theorem on the use of an equivalent plate
generator to represent.the amplification of a vacuum tube, on which the extension
of the mesh analysis to active circuits depends, is described in most books on radio
engineering. See, e.g., Terman “ Radio Engineering ” or “ Radio Engineer’s Hand-
book,” or Everitt “ Communication Engineering.”

1



2 NETWORK ANALYSIS Crar. 1

The condensers are specified in units of stiffness, or reciprocal capacity,
D = 1/C, in order to simplify later equations. Each branch has been
shown as including all three types of elements but in an actual network
many of the elements might, of course, be omitted.

Fundamental expressions for the analysis of such a network can be set
up by equating the instantaneous voltage drops in each branch of the net-
work to the voltage applied to that branch. For example, if I, represents

Ly Dy R,
-~ } ~“NAAMNA——
1,
4 1, E, 1, 1
L, A VWA —
Ly, Dy R, R, Lr
D
a /,\ I, IfJ« Df
R, Rf
E, E,
D
Fic. 1.1

the instantaneous current in the first branch of Fig. 1.1, the voltages across
the individual elements of that branch are R,l,, pLol,, and (1/p)Dol.,
where p and 1/p represent respectively differentiation and integration with
respect to time. The sum of the voltage drops through these three ele-
ments must be equal to the voltage of the generator E, plus the difference
between the voltages at the nodes 4 and D at which the branch terminates.
If welet E4 and Ep represent the node voltages, we therefore have

(PLa + Ra + }];Da) Ia = Ea + ED - EA- (1—’1)

There will be one equation similar to (1-1) for each branch of the net-
work, or B equations in all if B represents the number of branches. In
addition to these equations, however, further equations follow from the
fact that, since no electrical charge can accumulate at any node, the sum of
the instantaneous currents leaving each node must be equal to the sum of the
currents entering it. In Fig. 1.1, for example, this leads to the condition
I, =1I,+ I;. There is one such equation for each node. One of the
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equations, however, is superfluous, since if the law of conservation of
charge is satisfied at all but one of the nodes, it will automatically be satis-
fied at the last one also.* If the number of nodes is represented by N,
there will then be N — 1 current equations. The original branch equations
included, in addition to the branch currents, the N nodal voltages. One
of these voltages, however, can be chosen arbitrarily, since the branch
equations involve only voltage differences. There are thus B 4+ N — 1
unknowns to be determined, and the N — 1 current equations together
with the original B branch equations are just sufficient to permit a solution.
The N — 1 conditions at the nodes allow us to express N — 1 of the
branch currents in terms of the others so that a corresponding number of
the branch voltage equations similar to (I-1) can be eliminated. This
reduction becomes particularly easy if we follow the familiar device of
regarding the remaining branch currents as flowing through complete closed
loops in the network. The assumption of closed loops or meshes has two
.advantages. In the first place it evidently leads to automatic satisfaction
of the condition of conservation of charge at each node, since in each mesh
as much current flows away from any node as flows into it. In the second
place, it eliminates the differences in node voltages which appeared in the
original branch equations, since the sum of all such voltage differences
around a complete loop must be zero. We may also notice that, since there
were originally B branch currents and N — 1 of them have been eliminated,
the number of remaining currents or meshes is given by the

Theorem: In any conductively united network the number of inde-
pendent closed meshes or loops is one greater than the
difference between the number of branches and the number
of nodes.

An illustration of the reduction from branch to mesh currents is fur-
nished by Fig. 1.2, which shows a choice of mesh currents which is appropri-
ate for the circuit of Fig. 1.1. The independent branch currents in terms
of which the other currents are expressed are those flowing through branches
a, d, and f, each of which is included in only one mesh. There are three
meshes since the circuit contains six branches and four nodes.

It is apparent that in general the meshes can be chosen in a variety of
ways. Thus in Fig. 1.2 the independent branch currents might be chosen
as those flowing through, for example, 4, 4, and ¢, or a, 4, and ¢. These

* This analysis neglects mutual inductance couplings as a matter of simplicity.
If the network consists of a number of isolated fragments connected only by mutual
inductance, there is evidently one superfluous condition of this sort for each con-
ductively separate fragment of the network.
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possibilities are useful since they allow us
to assign branches in which we may have
particular interest, such as the generator or
receiver impedances, to individual meshes.
In a given physical circuit such assignments
cannot be made with unlimited freedom. In
Figs. 1.1 and 1.2, for example, it is not pos-
sible to assign branches 4, 4, and 4 to three
Fie. 1.2 separate meshes because the corresponding
branch currents are related by the condition
at node 4 and are not independent variables. For purposes of future an-
alysis, however, it will be assumed that there are no restrictions on the
choice of meshes, since an adequate mesh system can always be obtained
by the addition of ideal transformers or other elements of wvanishing
physical importance.

1.3. Mesk Equations for a Passive Circuit

It is evident that each mesh equation can be obtained by adding together
the branch voltage equations around the complete loop and at the same
time eliminating the superfluous branch currents by means of the nodal
current conditions. Since this introduces only linear combinations of the
coefficients in the original branch equations, the resulting system of equa-
tions must be in the general form

Zydy A Zygls 4 - - -+ Zyad, = B,
ZoyIy + Zoglog + -+ - + Zoul, = Ey
.............. (1-2)
anll +Zn2-[2++ZnnIn =En

where the Z’s in the left-hand side are of the form
1
Zij = pLij + Rij + P D;;

and p still represents 4/dt.

The mesh currents are indicated by numbered subscripts to distinguish
them from the branch currents. The coefficients Z;;, Z,,, etc., will be
called the self-impedances of the various meshes and the coefficients Zy,,
213, Zog, etc., the mutual or coupling impedances between meshes.

The mesh equations are expressions of voltage equilibrium. 'They express,
in other words, the fact that the sum of the driving voltages around
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a closed loop must be equal to the sum of the voltage drops in the
loop. 'This makes it easy to evaluate the E’s and Z’s in the equations.
In the first mesh equation, for example, let it be supposed that we set
Iy=I3=-:--=1,=0. This can be done without disturbing the
first mesh by inserting sufficiently high impedances in each of the other
meshes. The first mesh equation then reduces to

1
(pLu + Ru + ; D11> I, = E. (1-3)

Since there are no other currents flowing in the structure, the left-hand
side of this expression evidently represents the voltage drop due to the
flow of the current I; through all of the elements in the first mesh. The
coefficients Ly1, Ry1, and D;y thus represent respectively the sum of the
inductances, resistances and stiffnesses in the first mesh. Correspondingly,
E; on the right-hand side represents the sum of the generator voltages in
this mesh. Now, if we allow 7> to flow, an additional voltage drop Z;71,
appears in the first mesh. This must evidently be due to the flow of I,
through the elements which are shared by the first and second meshes.
Similarly, Z,3 represents the elements which are common to the first and
third mesh, etc.

The coefficients in the equations for the other meshes can be determined
in analogous fashion. In the purely passive circuits now under considera-
tion, the coefficients representing a coupling between two meshes must be
the same in each mesh equation. In other words, Z;; in the ith equation
must be the same as Z;; in the jth equation, since either quantity merely
represents the elements which are common to the two meshes.

The determination of the coefficients in the mesh equations can be illus-
trated by reference to the structure of Figs. 1.1 and 1.2. The self-impedance
Zyy of the first mesh is equal to the sum of the impedances around that
mesh. We thus have Ly = Lo + Ly + L¢y Ry = Ra + Ry + R,, and
Dyy = Dy + Dy + D,. Similarly, the voltage E; is equal to the total
voltage E, + E;, + E. of all the generators in this mesh. The impedances
Zys and Z;3 represent the elements which the first mesh shares respectively
with the second and third. As Fig. 1.1 is drawn, however, the positive
direction of the first mesh current opposes that of the second and third
mesh currents in each common branch. The coupling elements must there-
fore be taken negatively to account for the fact that the voltage drops across
them due to the flow of the second and third mesh currents are opposite to
those produced by the flow of the first mesh current. We thus have
Lis = —Ly, Ry3 = —Ry, etc. The terms appearing in the other mesh
equations can be determined in a similar fashion,
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1.4. Mesh Equations for an Active Circuit

To generalize equation (1-2) to fit a circuit containing vacuum tubes,
we may suppose that only one of the E’s on the right-hand side of (1-2)
is an actual driving voltage and that the remaining E’s are apparent plate
generators representing the amplifications of the tubes. For example, in
one particular tube, let us suppose that the jth mesh current flows from
grid to cathode and the kth mesh current from cathode to plate as shown by

Fic. 1.3 Fic. 14

Fig. 1.3. Following the usual assumptions, the amplification of the tube
can then be represented by inserting an equivalent generator —ue in series
with the plate impedance Ry, where ¢ is the grid voltage, as shown by
Fig. 1.4. The passive impedances of the tube can be incorporated as part
of the passive circuit and play no part in this analysis.

Since ¢ = Z,I; in Fig. 1.4, the equivalent plate generator voltage can
also be written as —uZ,1;. The kth of equations (1-2) can therefore be
written as
) Zindy + -+ + Ziili + - - -+ Zindn = —pZ,l;

or
Zplhi +--- + (ij+#zg)lj+"'+zknln=0 (1-4)

where Zy; is the passive coupling between the two meshes. It is obvious
that the equation is still in the same form as the original kth equation of
(1-2) provided we redefine Z;; to include the added quantity uZ,. Thisis
the familiar result that the amplifications of the tubes can be represented
by modifications in the various coupling terms in the mesh equations. So
far as the general form of the equations goes, the only distinction between
active and passive structures is the fact that we can no longer assume in
general that the principle of reciprocity holds. In other words, we can no
longer assume that Z;; = Z;;. The quantity pZ, will be called the mutual
impedance or transimpedance of the tube, after the analogy with trans-
conductance in the following discussion.

In order to prevent future confusion with signs, it is important to notice
here the convention adopted in Fig. 1.3 for the positive direction of grid
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and plate currents. It has been so chosen that the transimpedances in the
left sides of the mesh equations will be positive when the u’s are positive, as
they are in normal tubes, and also so that a uniform convention of sign can
be adopted for a number of tubes in tandem coupled by ordinary interstage
networks. With this choice, however, the equivalent plate generator volt-
age is negative, so that successive tubes in an amplifying circuit give suc-
cessive phase reversals, in addition
to any phase shifts which may be
ascribed to the purely passive ele-
ments of the circuit. Similar re-
marks apply to the nodal analysis
given later.

As an example of the processes in-
dicated by (1-4) we may consider the
mesh equations for the circuit of
Fig. 1.5. The structure represents
broadly cne stage of an amplifier with grid plate coupling. The coupling is
indicated by the impedance Z; and the preceding and following interstages
by the impedances Z, and Zs. Zs is the grid cathode capacity of the tube
and Zjz represents its plate impedance.

The circuit has three meshes. They are chosen in the form shown by
Fig. 1.5 in order to assign the generator impedance, the grid impedance
and the plate impedance each to only one mesh. If we assume for the
moment that the tube has no amplification the mesh equations are readily
set up in the form

(Zi+ Zs + Zo) Iy — (Zy + Z5)[2 + Zsls = E
~(Za+ Zs)Iy + (Zo + Zy + Zs5)I; — Z5I3 =0 (1-5)
Zsly — Zsly + (Z3 + Z5)[3 = 0.

Since the voltage across the grid is +73Z, when the currents are taken in
the directions shown in Fig. 1.5, the equivalent generator in the plate circuit
is —uZols. This appears as an effective voltage in the third mesh equation.
When this term is transposed to the left side of the equation in the manner
described previously, the third equation thus becomes

Z5Il + (p.Zz - Z5)[2 + (Z3 + Z5)I3 = 0 (1—6)

the other mesh equations remaining unaffected.

Fic. 1.5

1.5. Steady State Solution for the Mesh Equations

As the mesh equations have been developed thus far, they have always
represented differential equations for the circuit. Thus, for example, in
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(1-2) the E’s and I’s represent instantaneous values of voltages and
currents and p represents differentiation with respect to time. In order to
find the response of the circuit when one of the E’s is a voltage varying
sinusoidally with time, therefore, we should, strictly speaking, substitute
sin wf or cos w# for the appropriate E and attempt to find expressions for the
I’s as sums of sine and cosine terms in a form which would satisfy the set
of differential equations.

In accordance with the usual practice, this procedure can be much simpli-
fied if we represent a physical sinusoid by the exponential ¢*“!* The
currents and voltages in the system are then written in the form 7;6*“* and
E;¢*“t, where the I’s and E’s are now merely constants instead of being
quantities varying with time as they were in (1-2). The advantage of this
substitution results from the fact that differentiating or integrating ¢**
with respect to time merely multiplies or divides the exponential by sw.
Thus, any quantities of the form pet“® or (1/p)e*“® which result when the
currents J¢*“* are substituted for the original currents in (1-2) become
simply jwe'®® and (1/iw)e™* when the differentiation and integration
symbolized by p and 1/p are carried out. Each p on the left-hand side of
(1-2) is then replaced by iw. The time factors ¢*“* in the current and volt-
age expressions are unchanged, and can be divided out of the final equations.

1.6. Driving Point and Transfer Impedance

It follows from the considerations just advanced that the differential
equations (1-2) can also be regarded as a solution for the steady state
response of the network to sinusoidal voltages of frequency w/2x provided
P is replaced by iw and that we regard the I’s and E’s as representing merely
the constant coefficients in the general current and voltage expressions
Ie“t and Ee“'. With this understanding, the determination of any
particular current flowing in response to a particular voltage is equivalent
to the solution of a set of ordinary linear equations. As an example, the
current I;£'“* in the first mesh flowing in response to the voltage E,e'“*
also in that mesh is given by

. A X
Ileuot — ___1_1 Elezwt (1_7)
A
where A is the determinant of the coeflicients in the left-hand side of (1-2)
and A;; is the determinant obtained when the first row and the first column

of A are omitted.
The driving point impedance Z in the first mesh is by definition the ratio

* A discussion of the physical meaning of this substitution is avoided here, since
the subject is taken up again in the next chapter.



MESH AND NODAL EQUATIONS 9

of the voltage to the current in equation (1~7). It is given in other words
by
E; A
Z=—=—:= (1-8)
Iy Any
In a similar fashion the equations can be solved to determine the current
in any other mesh in response to this same voltage. For example, the
current in the second mesh is given by

I6t = —= E o't (1-9)

where Ays is the determinant of the coefficients in the left-hand side of
(1-2) after the elements in the first row and second column have been
omitted.*

The ratio between the voltage E; and the current J5 will be called the
transfer impedance, Zp, from the first to the second mesh. It is given by

E. A
== (1-10)

Z — —
d Iy A

1.7. Z and Zy as Functions of a Single Element

In future discussion, we will have frequent occasion to study the depend-
ence of the driving point and transfer impedance upon a single element in
the network. Let it be supposed, for example, that we are interested in the
variation of Z with respect to a bilateral impedance z in the jth mesh.}
This can be investigated by examining the way in which z enters the deter-
minants A and Ay of (1-8).

In general, any determinant can be regarded as the sum, with appropriate
signs, of all possible products formed by multiplying together elements of
the determinant, when each product includes just one element from each
row and column of the determinant. Since z is in the jth row and column
of A, it must therefore be multiplied by all possible products of elements
taken from every row and column of A except the jth. These, however,
evidently form the minor Aj; of the original determinant. Similarly, in

* Strictly speaking, the symbols Ay, Ajg, etc., represent cofactors here. In
other words, they are the determinants as defined in the text multiplied by +1 or
—1 in accordance with the usual rules of determinant theory. In particular, Ajs
is negative. This may be ignored for theoretical analysis, however, since it is only
necessary to treat the symbols as cofactors consistently.

11t is assumed here, In other words, that z is found in the jth mesh and in none of
the others so that it is a constituent of only the self-impedance Z;; in (1-2).
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forming A;; the terms by which z is multiplied must be the minor Agyjs
obtained by omitting both the first and jth rows and columns. If we let
A® and A}; represent, respectively, A and Ay; when z = 0, therefore, we
have

_ AO + ZAJ'J'

A + 2A11j;
Since Aj; and Ay ; are evidently independent of z they can equally well
be written as A% and A%y;;.  This will occasionally be done in later analysis
in order to facilitate further transformations.

The relation between Zp and z can be found in similar fashion. It is
given by

Z (1-11)

_ A® + 2Aj;
Ay + 2A1955
If z represents a unilateral coupling term, instead of a bilateral element,

the expansion is essentially the same. Thus, if we suppose that zis a part of

Z;j in the original determinant, we readily find

' A® + 27y

Al + 2Aq14

Zy (1-12)

Z= (1-13)

and
_ A® + 24y
A + 2A10i

1.8. Noda! Equations for a Passive Circust*

In the mesh equation formulation, the driving sources are regarded as
voltages. The dependent variables, whose determination constitutes the
solution of the structure, are the currents in the several closed loops or
meshes. There is one equation for each mesh and each equation represents
the fact that it is physically necessary for all the meshes to be in voltage
equilibrium.

As we might expect, it is also possible to set up a system of equations in
reciprocal form with the activating forces taken as currents and their
responses as voltages. In this case, the nodes replace the closed loops in
the mesh equation analysis. Figure 1.6 shows the form which such an
analysis may take. The driving sources are the currents I;--- 1,
impressed on the nodes 1 - - - # from some outside sources. The responses
are the voltages E; - - - E, for the individual nodes. Each voltage is sup-

Zy (1-14)

* The writer is indebted to Prof. R. M. Foster, of the Polytechnic Institute of
Brooklyn, for pointing out the superiority of the nodal analysis,
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posed to be measured with reference to some particular node which is
chosen as ground.

The fundamental equations in the nodal system are expressions of current
equilibrium. They represent, in other words, the fact that the driving
current flowing into any node from the outside must be equal to the total
current flowing away from that node into the rest of the network, just as

IN AN T Tl - ;04
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F1c. 1.6

the mesh equations represent an equilibrium between driving voltages and
voltage drops in any mesh. In Fig. 1.6, for example, the current flowing
into the first node from the outside is J;. The current flowing from that
node directly to ground must be Y E;. The current flowing from that
node to the second node must be Y 3(E; — Ej), etc. The complete equa-
tion is therefore

YiE1 + Yis(Ey — Ep) + -+« + Y (E1 — E,) =1,  (1-15)
which can evidently be written as
YuE, — YisEy — YisE3 — -+ - — Y,.E, =1 (1-16)

where

Yu=Y1+Yi24+ Yz + -+ Y1 (1-17)

In equation (1-17) Yj; is obviously the total admittance between the
first node and all the others when the others are shorted together. It will
be called the self-admittance of the node and is evidently analogous to the
self-impedance of a mesh, which can be defined as the impedance of the
mesh when all other meshes are opened. Similarly, the terms Y7i; are
mutual admittances corresponding to the mutual impedances appearing in a
set of mesh equations.

Since an equation analogous to (1-16) can be written for each node, the
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complete system of equations becomes

Yuk, — YioFEy — - - = Y1,E, =1,
—YaukE + YoEy — -« — Yoo, = I,
................................. (1-18)
- nlEl - Yn2E2 — YnnEn = In

It is not necessary to write a separate equation for the last or ground ”’
node. Since as much current must leave the network as a whole as enters
it, the condition of current continuity will automatically be satisfied for
this node if it is satisfied for each of the others. We thus have the

Theorem: In any conductively united network the number of inde-
pendent nodal equations is one less than the total number
of nodes.

At first sight, it might appear that the cases in which we can regard the
energizing sources as constant current generators or, in other words, as
generators with infinite internal impedances would be rather rare. In the
mesh equation analysis, however, we seldom deal with generators having
zero internal impedance and it is customary to allow for this by adding the

ﬁ .
F o {
E/z,
Z, Infinite
Z,
Impedance Source
E
— ;
) —o j
J Efz,
Fic. 1.7 Fic. 1.8

internal impedance of the generator to the impedance of the mesh in which
it appears. When consideration is given to this fact the two methods stand
on an absolute parity.

To show this, let us suppose that the actual driving source is a generator
of internal emf E and internal impedance Zy connected between terminals 7
and j as shown by Fig. 1.7. It is easy to see that this must be equivalent
to the circuit shown in Fig. 1.8 for any connections between 7 and j- In
other words, the source shown in Fig. 1.7 can be represented in the nodal
admittance analysis merely by choosing the energizing currents I; and I;
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as E/Zy and — E/Z, respectively, and adding the admittance 1/Z; across
terminals Z and .

In this discussion we are concerned with the use of current rather than
voltage sources only to establish the broad possibility of writing network
equations in the general form given by (1-18). It is interesting to note,
however, that the formal symmetry between the current and voltage
methods of analysis can also be extended to the individual terms in these
equations. This follows from the fact that the current and voltage rela-
tions for a resistance or conductance can be written as E = RI and
I = GE, while the corresponding expressions for a capacity or inductance
are E = LpI and I = CpE, where p may be either i» or d/d:.

It is obvious from the symmetry of these expressions that we can erect
a set of nodal equations formally identical with a given set of mesh equa-
tions by interchanging R and G and L and C wherever they appear. In
other words, the general term Z;; = pLy + Rij + Dyj/p in (1-2) is re-
placed by Yi; = pCi; + Gij + T'ij/p in (1-18), where I' stands for a
reciprocal inductance, just as D represents a reciprocal capacity. The
two sets of equations will evidently be equal, term for term, provided we
set Lij = Cyj, Rij = Gij, and Dyj = Ty

The recognition of these general possibilities constitutes the so-called
principle of duality in network theory.* If the mesh equations for one
network correspond, term for term, with the nodal equations for another,
the two networks are called nverse structures. It is not always possible
to obtain the exact inverse of a given structure. There are difficulties,
for example, with networks including mutual inductance coupling, since
the capacitance dual of a coupling between coils does not exist. The
inverse may also fail because the inverse set of equations does not corre-
spond to any conceivable arrangement of impedance branches. In most
of these instances, however, it 1s possible to obtain a network which will
behave like the desired inverse so far as external connections are con-
cerned, though it may have a different internal structure. The detailed
discussion of these possibilities is beyond the scope of this chapter. The
subject is resumed in Chapter X.

1.9. Nodal Equations for an Active Network

The modifications which are necessary in order to include vacuum tubes
in a nodal admittance analysis are essentially similar to those we have
already made in the mesh analysis. Suppose, for example, that the grid,

* Good general discussions are given in Guillemin “ Communication Networks,”
Vol. II, and Gardner and Barnes “ Transients in Linear Systems,” Vol. I. The
latter reference may also be cited for its detailed description of the method of setting
up a system of nodal equations, especially in circuits containing mutual inductance.
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plate, and cathode of a given vacuum tube are respectively nodes 7, £, and 7
of the complete network. The voltage between grid and cathode is then
E; — Ep, and in accordance with our

I \ preceding discussion the effect of the am-

: plification of the tube can be represented

m 1
4 2 . . :
- by introducing an equivalent generator
—u(E; — E,) in the plate circuit. It

[b follows from Figs. 1.7 and 1.8, however,

that this equivalent generator can in
turn be replaced by two current sources
of strengths —u(E; — E,)/Ry and
w(E; — E,)/Rp applied to the plate and
cathode, respectively, where Ry is the internal resistance of the tube, pro-
vided the admittance 1/R, between plate and cathode is incorporated as
part of the network.

With the application of these two current sources, the kth and mth
nodal equations become

Fic. 1.9

—YuEi — YigEy — -+« — YinEn = —u(E; — En)
Ro
(1-19)
~Ym1EL — Yooy — -+ — Yoo Ep = u(Ej — En)
Ro

The terms on the right-hand side can now be transposed and incorporated
as part of the mutual admittance terms appearing in the left-hand side. In
most cases, the mth or cathode node will be at ground. If we make this
assumption, which corresponds to the assumption made in connection with
Fig. 1.3, that the grid and plate circuits are in separate meshes, the second
of equations (1-19) can be ignored. The first equation then becomes

—~YiEy — YigEy — <+ o = (Yj — Gu)Ej — +++ — YiaEa =0 (1-20)

where G,, = u/Ro and is the quantity usually described as the transcon-
ductance of the tube. As in the mesh analysis, the effect of adding vacuum
tubes is not to change the form of the equations but merely to destroy the
reciprocity condition Yy; = Y.

As an illustration of these processes, nodal equations will be developed
for the circuit shown in Fig. 1.9. This is the same network as the one
previously shown by Fig. 1.5, redrawn to suit the nodal analysis. Since
the bottom or cathode node can be taken as ground, there are two equations.

" If we suppose initially that the apparent current generator —G,E, in the
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plate circuit is zero, the equations are readily found to be

M1+ Y, + Y E - Y,Ex=1
(1-21)
—Y.E,+ (Y3 + Y.+ Y5)E, =0.

The introduction of the plate generator is equivalent to adding —G,,E;
to the right-hand side of the second of these equations. After this term is
transposed to the left-hand side, this equation becomes

—(Ys = Gu)E 1+ (Y3 +Ys+ Y5)E; =0 (1-22)

the first of equations (1-21) remaining unchanged.

A solution of the nodal equations to find the steady state voltages corre-
sponding to any given set of sinusoidal driving currents can evidently be
obtained by the processes already used for mesh equations. For example,
the driving point admittance Y between the first node and ground will be
defined as the ratio between the driving current entering that node and the
resulting voltage at the node. It is evidently given by

I A

(1-23)
where the primes are used to indicate that the determinants refer to the
system of equations given by (1-18). Similarly, the transfer admittance Yr
between the first and second node will be defined as the ratio of current
applied at the first node to the resulting voltage at the second node. It
can be written as

I A’
Yr=% =4 (1-24)
In view of the obvious analogy between the mesh and nodal methods of
analyzing a circuit, the two methods will be used indifferently in most of the
following discussion. The primes, which were used in equations (1-23)
and (1-24) to distinguish the nodal determinants from those obtained from
the mesh equations, will ordinarily be omitted. The determinant A will
thus be used to refer to either system unless there is some particular reason
for distinguishing between them. The symbol 7, which may perhaps be
called an “ adpedance ” or *“ immittance,” will be used to refer to an element

in either system.

1.10. Ctoice between Mesh and Nodal Analysis

The above discussion has emphasized the fact that mesh and nodal
equations can be used symmetrically in a general theoretical analysis.
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The reader is cautioned, however, against concluding from this that the
choice between the two systems is a matter of indifference when one is
dealing with a definite physical circuit. In most circumstances the nodal
analysis will be found appreciably more convenient.

The advantages of the nodal analysis may be traced to several causes.
The most obvious is, of course, the fact that many circuits contain screen
grid tubes having a very high plate resistance. Since such tubes are very
nearly constant current devices, circuits containing them can evidently be
analyzed more conveniently on the nodal than on the mesh basis.

Another advantage of the nodal formulation results from the fact that
the equations can be more directly correlated with the physical structure
of the network than is possible with the mesh formulation. The nodal
equations can be written down directly, but to use the mesh analysis it is at
least necessary to begin by selecting a suitable system of closed loops. Ina
complicated circuit, this may not be as easy a problem as it appears. The
difference becomes particularly conspicuous in the inverse situation, when
one has been given a set of equations and wishes to determine a correspond-
ing physical structure. It is evident that the corresponding structure can
be written down directly if we use nodal equations. If we begin with mesh
equations, on the other hand, the process may be quite difficult. In fact,
it is theoretically possible to write down a plausible looking set of “ mesh
equations > for which no corresponding circuit configuration exists.

The final consideration is the fact that, although either mesh or nodal
equations can be used in analyzing any given circuit, it is not necessarily
true that the two formulations will require the same number of equations.
The preceding discussion gives the required number of equations as
B — (N — 1) for the mesh system and as N — 1 for the nodal system.
In order to compare these expressions, suppose that the network is originally
very simple and is built up to its final form by the addition of one node at a
time. Obviously, each new node must be connected with the original
circuit with at least two new branches if the node is to be an operative part
of the structure. We may expect therefore that B will be at least twice as
great as N — 1, so that in general the number of mesh equations will not
be less than the number of nodal equations and may be much greater if the
circuit is complicated.* For example, it required three mesh equations
and only two nodal equations to analyze the structure shown by Figs. 1.5

* These conclusions are true only “ in general * because of the possibility of simul-
taneously creating two new nodes by means of a cross-connection between them,
so that one branch serves for both. An example is furnished by a balanced ladder
line, the cross-connections being the shunt branches. These, however, are excep-
tional cases which are not representative of ordinary physical circuits.
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and 1.9. In general, the nodal analysis appears to be particularly adapted
to complicated high frequency circuits where we must consider many
capacities to ground. Evidently, ground capacities from any of the exist-
ing nodes will not greatly complicate the nodal equations, but they may
considerably increase the number of meshes in the circuit.



CHAPTER 1I

Tue ComprLEx FreEQUENCY PraNE

2.1. Introduction

IN actual engineering applications we are concerned with the response
of a circuit only to currents and voltages at real frequencies, that is, to
ordinary sinusoids. For purposes of analysis, however, it is often neces-
sary to give attention also to the response of the circuit to driving forces
whose frequencies are complex. This chapter will consider the physical
meaning which may be assigned to the term “ complex frequency > and
some of the elementary ways in which the conception of complex frequencies
may be used in describing circuit characteristics.

2.2. The Single Resonant Circuit

It will be recalled that the general circuit equations in the last chapter

were first developed in differential form, and that integrated or “ steady-

state ”’ solutions for sinusoidal driving forces

were obtained by supposing that the exponen-

l L E R Di_l tial ¢'“* could be substituted for a physical sinu-

-  soid. The meaning of a complex frequency can

Fic. 2.1 be understood most easily if we return for a

moment to this last step. It will be sufficient

to examine the solution for the single resonant circuit consisting of resist-
ance, inductance, and stiffness in series, as shown by Fig. 2.1.

Let the sinusoidal driving voltage be written as Eq cos wf. If ¢ repre-
sents the charge on the condenser, so that the current I = dg/dt, the differ-
ential equation of the circuit is

4’

dg
LZE+RE+Dq= E, cos wt. 2-1)

We may assume that the solution of this equation can be written in the
general form

q = A cos wt + B sin wt (2-2)
or
dg .
== = — Aw sin wt + Bw cos ot (2-3)

where A4 and B are constants still to be determined.
18
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The substitution of the assumed form (2-2) for ¢ in (2~1) gives

~ALw? cos wt — BLw? sin wt — ARw sin wt
+ BRwcoswt + ADcoswt + BDsinwt = Egcoswt. (2-4)
This equation must hold for all values of £  In particular, it must hold for

values of # at which sin «f is zero and also at values of # for which cos w?
is zero. But when the sine terms are zero (2—4) becomes

—ALw? + BRw + AD = E, 2-5)
and when the cosine terms are zero it becomes
—BLw®* — ARw + BD = 0. (2-6)
These equations can be solved simultaneously for 4 and B. ‘This gives
(D — Lo®)E,
= 2-7
I R+ D - AP @
(Rw) Eo
= 2-8
(Ra)? + (D — Lo*)? 2-8)
from which the assumed solution for ¢ becomes
T (D — Lo?) Rw _ ]
7g=2£F | R + D = Lab)? cos wt + Ry + (D — L' sin wf
(2-9)
or
i R Lo — D/w . ]
I =E, BT Gw = D/o")zcoswt—{—R2 T (Lo — D/a)? sin w?

(2-10)

The fact that these are correct solutions is easily established by direct sub-
stitution in equation (2-1). The coefficients in equation (2-10) are, of
course, the familiar expressions for the in-phase and quadrature components
of the total current.

2.3. Exponential Representation of Physical Sinusoids*

The expression given by (2-10) is evidently the true physical current
which would flow in response to the assumed sinusoidal driving voltage.

*The use of the exponential solution in electric circuit theory goes back at least
as far as Heaviside, “ Electromagnetic Theory.” For later discussions see G. A.
Campbell, “ Cisoidal Oscillations,” Trans. A.LLE.E., April, 1911; J. R. Carson, *“ Elec-
tric Circuit Theory and Operational Calculus,” 1926 (Bibliography); T. C. Fry,
“Elementary Differential Equations,” 1929. The last reference gives a particu-
larly complete discussion, :
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The method required to derive (2-10), however, is cumbersome and labori-
ous and these objections would appear still more forcefully if we had dealt
with a multi-mesh system. The use of the exponential ¢'“* to represent
the actual physical sinusoid provides a way of analyzing the circuit much
more expeditiously.

The justification for the use of ¢*“* in place of a physxcal sinusoid depends
upon the principle of superposition. It depends, in other words, upon the
fact that in a linear system such as (2-1) the current flowing in response to
two driving forces acting together is the sum of the currents which would
flow in response to the two separately. Thus, in (2-1), if ¢,(#) is the
response of the network to E1 (#) so that

d 71 1171

+ R+ Do = Ei@) (2-11)

and g5 (?) is the response to Es(#) so that

il "2 + Rdﬂ + Dga = E5(p) (2-12)

then

2

LTt e | gl ) gt - B0+ BO @)
follows obviously from simple addition of equations (2-11) and (2-12).

This principle is usually applied to find the response to E;(#) + Es(¢)
from the responses to E;(#) and E,(¢#) separately. In this application,
however, the principle is made to work backward to give the responses to
E,(®) and E5(t) separately when the response to E; (#) + E3(#) is known.
Obviously, it is not always possible to do this, since the knowledge merely
of the sum ¢;(#) + ¢2(#) does not necessarily tell us how much is ¢; (#) and
how much is go(#). The decomposition can, however, be effected without
ambiguity if E;(¢) is real while E;(#) is a pure imaginary quantity, since it
follows from the fact that the coefficients of (2-1) are real quantities that
the corresponding ¢; () and ¢2(¢) must then be real and pure imaginary,
respectively. In this special case, therefore, we can work backward from
equation (2-13) to equations (2-11) and (2-12) merely by picking out the
real and imaginary components of the g which is a solution of (2-13).

In the present application, we have ¢*“* = cos wf + 7 sin wf. The real
and imaginary components of the ¢ which corresponds to the driving voltage
¢*“* must therefore be the ¢’s which would correspond respectively to the
voltages cos «f and 7 sin wt. For example, let ¢; and 7g2 be the solutions
which would correspond to the voltages Ey cos w# and iEq sin ot in (2-1).
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and let ¢ = g1 + ¢g2. We then have

a’
dt? + R~ dql + Dg1 = Eo cos wt (2-14)
a2 (i d
L :,;;’2) + rY 72) + Digs) = iFy sin wt. 2-15)

Adding (2-14) and (2-15) together gives us

dq

L3+ R + Dq = Eget®t = Egert (2-16)

where p has been written for iw. By the previous argument, the real com-
ponent of the ¢ which satisfies this equation will be the ¢; which satisfies
equation (2-14). Upon assuming that g = go¢?* we find readily

q0(P°L + pR + D)eP! = EgePt. (2-17)
It follows that
B 2-18
qo_p2L+pR+D (_)
or
o PR
“ LY pR+D (2-19)
Upon substituting jw for p in (2-19) we secure
I = Eqo(cos wt + 1 sin w?) . (2-20)

R+i<wL—lD>
w

The real component of (2-20) should be the current flowing in response
to the voltage Eo cos wt. It turns out to be

1 .
R cos wt (wL — ‘—0 D) sin w?
1 2 + 1 P
R? +(wL - = D) R? +(wL -~ D)
w w
which agrees with equation (2-10). The method also gives as a by-product

the current which will flow in response to the voltage Ej sin wf. We have
merely to take the imaginary component of (2-20), discarding the i.

It = Eo (2-21)
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This gives
1
R sin o (wL - D) cos w#
1 2 1 2
R2+(wL——D) Rz-l—(w[.——D)
w [

This process can evidently be extended directly to multi-mesh circuits.
If we begin with a driving voltage Ee”* the solution of the circuit equations
for any one of the currents will appear in the general form I¢?%, and if the
real component of E¢** is taken as the true physical voltage the real com-
ponent of I¢e?* will be the physical current.

It will be convenient to summarize this discussion in a form in which it
appears as a set of definitions of the meanings we shall ascribe to the terms
“ frequency ” and ““ impedance.” Thus

(1) A voltage of frequency f will be written as Eoe?* where p = 2xif.
Physically, we shall interpret such an expression by taking only its real
component. FEg, which was taken as a real quantity in the previous
example, may in general be complex. The use of a complex value of E,
amounts simply to a shift in the phase of the physical voltage, as we can
readily see by taking the real component of (Ey; + iEqs)eP".

(2) We shall take as the current in any mesh the quantity which satisfies
the differential equations of the circuit with the voltage of (1) as the
driving force. It will appear in the form Joe?* where o is another complex
constant. The actual physical current corresponding to the actual physi-
cal voltage will be the real component of this expression. For brevity, the
constants Eq and Jq alone will sometimes be spoken of as ‘ voltage ”” and
“ current.”

(3) The self- or transfer impedance, depending upon whether the current
and voltage are in the same or different meshes, will be defined as the ratio
Ey: Iy of the constants in the voltage and current expressions of (1) and
).

(4) The impedance is obtained as an algebraic quantity from the solu-
tion of the set of linear equations which result when the differential opera-
tor d/dt is replaced by p = jw in the differential equations of the circuit.

Tinag = Eo (2-22)

2.4. The Complex Frequency Plane

The definitions of frequency and impedance which have just been given
were developed on the assumption that the driving force would be a simple
sine wave. The frequency f is then a real quantity and the new variable p
is a pure imaginary. Quite evidently, however, the definitions can be
extended formally to situations in which both f and p are complex. The
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physical meaning of such an assumption is easily determined. Suppose, for
example, that we are dealing with the driving voltage Ege?’. Let Eg and p
be, respectively, £o1 + #Eoe and p; + ips. The voltage can then be written
as

(Eo1 + iEgg)e PPt = (Ey, cos pot — Egg sin pat)e™
+ i(Eol sin Dot + E02 Cos Pzt)t’mt. (2—23)
By the definitions just established the physical voltage is the real com-
ponent of this expression or, in other words, (Eo; cos par — Egg sin pot)eP™,

It is obviously a sinusoidal oscillation with positive or negative damping
depending upon whether p; is negative or positive. The physical current

NI\

N\

_
\
\

2 /§/

7
N\
N

Fic, 2.2

corresponding to this voltage is obtained by dividing the complex voltage
by the impedance and taking the real component of the result. It will
evidently be a damped sinusoid with the same frequency and damping as
the driving voltage. '

We will hereafter consider that frequency is in general a complex quan-
tity. It can conveniently be represented on a plane such as that shown
by Fig. 2.2. As the figure is drawn, the horizontal axis represents real
values of p, and the vertical axis imaginary values of p or real values of fre-
quency. Real frequencies are therefore obtained by reading up the vertical
scale. This arrangement is normally the most convenient one in theoretical
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analysis, since p is a more convenient variable than f. If we prefer, how-
ever, the diagram can be given a quarter turn in a clockwise direction, so
that real values of frequency are found on a scale reading from left to right
in the normal fashion. In this event, complex frequencies are found above
and below the real frequency axis. The other axis, corresponding to real
values of p or pure imaginary values of frequency, represents the limiting
case in which the driving voltage and responses are exponentlally increasing
or decreasing without oscillation.

It will be noticed that the diagram represents negative as well as posi-
tive values of frequency. The lower half of the plane, in which negative
frequencies are found, is seldom of much actual concern in network analysis.
In any physical circuit, the real component of the impedance is an even
function of frequency, and the imaginary component is an odd function.
In other words, the real component of the impedance at a negative fre-
quency is equal to its value at the corresponding positive frequency, while
the imaginary component at a negative frequency is the negative of the
imaginary component at the corresponding positive frequency. Simple
relations of symmetry, therefore, connect the upper and lower halves of
the plane.

The distinction between the right and left halves of the p plane, or the
upper and lower halves of the frequency plane, on the other hand, is of
primary importance. 'This arises from the fact that on one of these halves,
the driving voltage and response correspond to functions which decrease ex-
ponentially with time, while on the other half they represent exponentially
increasing functions. As our later discussion will show, there is a close
connection between the steady state response characteristics of the net-
work, and its transient characteristics. Since a network whose transients
increase as time goes on is unstable, or, in other words, non-physical, the
characteristics of physical networks in the half of the plane corresponding
to exponentially increasing functions are severely limited.

2.5. Zeros and Poles of Impedance and Admittance

The functions whose behavior on the complex plane will be of chief
interest are the driving-point and transfer impedances Z and Zp, and the
corresponding admittances Y and Y7. Each of these can be expressed in
terms of determinants whose elements are relatively simple functions of
frequency. In the mesh system, for example, the general impedance
coefficient can be written as Z;; = (p°Li; + pRij + Dij)/p. Since any of
the determinants A, Ajy, Aje used in the definitions of Z and Zr can be
expressed as the sum of products of quantities of this type, it is clear that
they must all be polynomials in p divided by some power of p. The same
result, of course, holds for determinants taken from the nodal system,
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The individual functions, Z, Zr, Y, and Y7, are each expressible as the
ratio of two determinants, from equations (1-8), (1-10), (1-23) and
(1-24). Evidently, therefore, they must each appear, in general, as the
ratio of two polynomials, as shown by

Aunp™ + App™ ™ + -+ dip + Ao
B’npn + Bn—-lpn_1 + cee + Blp + BO

Wy = (2-24)

Such an expression is called a rational function of p.

In studying the behavior of such a function as (2-24) on the complex
frequency plane, it is convenient to give special attention to its zeros and
poles, which are respectively the points at which the function becomes zero
and infinite. This is easily expressed by rewriting both numerator and de-
nominator of (2-24) as a product of factors, so that the equation becomes

_An@ —p )@ —p2) - (P — Pm),

W - 4 4 ’
D" B.p—20)(@— 24 (p — ph)

(2-25)

Evidently ; - - - pm are the zeros, and p] - - - p} are the poles. Ordinarily
the ’s and p”’s will all be different, so that the zeros and poles are all of the
first order, or ““ simple.” In special cases, however, two or more zeros or
poles may coincide to give a multiple zero or pole. The zeros and poles
are obviously the analogues, for general networks, of the resonances and
anti-resonances which are familiar in purely reactive structures. The prin-
cipal difference is the fact that the * resonances ”” and “anti-resonances ”
in a general network may occur at complex frequencies.

The consideration of the zeros and poles is important for two reasons.
The first is the fact that except for the constant multiplier 4,/B, they
evidently specify (2-25) completely. Assuming, then, that # represents
a driving-point impedance or admittance, we can conclude that rwo
driving-point impedances or admittances having the same zeros and poles can
differ only by an ideal transformer. Similarly, if # is a transfer impedance
or admittance, we can say that two transfer impedances or admittances
having the same zeros and poles can differ only by a constant gain or loss.

The other reason for paying particular attention to the zeros and poles
will appear more clearly in later chapters. It depends broadly upon the
fact that the location of the zeros and poles in the frequency plane furnishes
our best index in classifying networks. Thus, unless the zeros and poles
meet certain restrictions, the impedance functions which they specify can-
not be furnished by a physical network. Assuming that these restrictions
are met, further study of the zeros and poles permits the function to be
assigned to one of several general categories.
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2.6. Zeros and Poles of a Resonant Circuit Impedance

As an illustration of this discussion we may return to the resonant circuit
which was analyzed earlier in the chapter. The impedance of this circuit,
as given by (2-19), can be written as

7=12— pap(p — p2) (2-26)
where

R R\* D _ R \/R)z D,
P‘__2L+\/(2L> LT T (21: . &

The quantities py and p, are evidently the zeros of the impedance. Their
location depends upon the two quantities, R/L and D/L. If we multiply
R/L by any quantity, and D/L by the square of that quantity, however, p,
and p2 will merely be multiplied by the same quantity. It is, therefore,
sufficient to study the possible locations of p, and p; when R/L is varied

+W
o
P plane
-p +
°
-
F1c. 2.3

while D/L is held fixed. If R/L is small compared to D/L, which corre-
sponds to a resonant circuit with small damping, the quantities under the
square root signs will be negative, and py and pq will therefore be conjugate
complex numbers with negative real parts. Typical locations for p; and
D2 are represented by the circles in Fig. 2.3. The cross at the origin repre-
sents the pole of impedance which is found when p = 0. It is customary to
consider that there is another pole at p = o, since the impedance is also
infinite there.

It is easily shown that, as R/L varies, p; and ps move along the circular
paths indicated by Fig. 2.4. At the extreme points A4 and A’, for which R
vanishes, p; and ps lie on the real frequency axis. This corresponds to the
ordinary resonance of a non-dissipative resonant circuit, in which the
impedance vanishes at a real frequency. The points Band B’ represent the
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zeros when the circuit contains a moderate amount of dissipation. This is
similar to the case previously illustrated by Fig. 2.3. At C, on the other

hand, (R/2L)2 = D/L and the two tw

zeros are equal. In other words, the

impedance has a double zero at this PP i

point. This is the critically damped B |
case. Since C is found on the real p // 2 plane
axis the corresponding physm‘:a.l volt- Y G »
age and current are non-oscillatory VD

exponentially decreasing functions. \

If R/L is still larger, p; and p, are \\ B

found respectively to the right and o\\ ,

left of C on the real p axis as illus- ‘"1 “

trated by D and D’. It will be no- -0

ticed that, although the zeros can be F1o. 2.4

assigned a great variety of positions by varying the relations among R, Z,
and D, they are always found in the left half of the p plane.

2.7. Analytic Functions

The introduction of complex values of frequency is equivalent in mathe-
matical terms to studying such quantities as the driving-point and transfer
impedance by the methods of function theory. In this field, one of the
most important tools available to the mathematician is the conception of
an analytic function.

Definition: A function is said to be analytic at a given point in the
plane of the independent variable provided it has a finite
derivative, independent of direction, at that point.

The function is analytic over a given region provided it is analytic at
every point in that region. Points for which it is not analytic are called
singular points or singularities.

The restriction that the derivative be independent of direction is rela-
tively unimportant for engineering purposes. It is effective only in elimi-
nating such functions as the real component of Z, or the absolute value
of Z. For example, | Z | cannot be an analytic function of p at any point
because d| Z | must be a real quantity, and the phase angle of the derivative
d] Z | /dp must therefore change as we change the phase angle, or direction,
in which dp is taken. As long as we restrict ourselves to functions which
are in general complex, such as Z or log Z, however, the fact that the deriva-
tive will be independent of direction can be taken for granted. The essen-
tial feature of the definition, then, is the fact that if the function is to be
analytic the derivative must be finite,
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The points at which the derivative of a rational function, such as (2-25),
becomes infinite are readily determined. If, for example, we let N and D
represent respectively the polynomials in the numerator and denominator
of (2-25), the ordinary rules for differentiation give

dN _ \dD
dW(Tj _ dp dp .
dp D?

Since N and D are ordinary polynomials, neither they nor their derivatives
can become infinite for any finite value of p. We can thus conclude that
(2-28) will become infinite only at the points at which D vanishes, or in
other words only at the poles of the original function. The singular points
of an impedance or admittance function are therefore its poles, and the function
will be analytic in any part of the p plane which contains no poles.

It will be seen that the analyticity of the impedance or admittance func-
tion # is not dependent upon the location of its zeros. If # is a trans-
fer impedance or admittance, however, it is usually convenient to specify
it in terms of attenuation and phase shift. This is equivalent to dealing
with the function log #, rather than with # itself. The expression
corresponding to (2-28) for the derivative of log # is

dN _ .dD

dlog Wy~ dp E
dp ND

This is evidently infinite whenever either N or D vanishes. The singular
points* of the logarithm of an impedance or admittance are therefore the zeros
and poles of the original function. Log W will be analytic only in regions
which contain no zeros or poles of 7.

The properties of analytic functions furnish the most direct method of
establishing Nyquist’s criterion for stability. The first application of this
material will be made in Chapter VIII, where Nyquist’s criterion is
discussed.

(2-28)

(2-29)

2.8. Physical Validity of Complex Frequencies

The conception of a complex frequency can be looked upon in several
ways. If we like, we can think of complex frequencies as having real

*The singular points are “ logarithmic singularities ” and not poles. For the
point po to be a pole the function must approach infinity near po as 1/(p — Do),
where 7 is an integer. Although log # approaches infinity at the zeros and poles
of #, the approach is at a much slower rate. For example, it is shown in ordinary
calculus that, although log x = — log (1/x) approaches — % as x vanishes, it in-
creases so slowly that the limit of x log x is zero,
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physical existence. The definitions of complex frequency and impedance
have been so drawn that an analysis stated in terms of complex frequencies
can be submitted to physical verification. There is no difficulty in suppos-
ing that a generator can be constructed to give a driving voltage varying as
an exponentially increasing or decreasing sinusoid for a reasonable period of
time. By energizing a network with such a generator, the response charac-
teristics of the structure can be obtained by direct physical measurement.
The conception of complex frequency can thus be checked in the laboratory
by a direct comparison of measurement and computation.

Although this physical possibility is present, another point of view is
more illuminating. We are finally interested in the response of the network -
only at real frequencies. It is only this characteristic which is specified in
ordinary design problems. Moreover, the Fourier integral analysis tells
us that if we know the responses of the network to driving voltages repre-
sented by pure sinusoids, we can find its response to any other driving
voltage. The real frequency characteristic, therefore, tells the whole
story. So far as the purely theoretical relations are concerned, we might
start with the response at real frequencies and compute the response to the
exponentially increasing and decreasing sinusoids corresponding to complex
frequencies by Fourier integral methods.

Although the complex frequency conception is thus not essential, its
introduction is of great value in facilitating the mathematical treatment of
the theory. From a purely mathematical point of view, it is simpler to
study the impedance function on the complex frequency plane than it is to
consider only real frequencies. We have already noticed an analogous
situation in the discussion of the response of the resonant circuit to a sinu-
soidal driving voltage. The addition of an imaginary component to the
voltage, although it is later discarded, makes the mathematical expressions
so much more symmetrical that the algebra is actually much simplified.
Somewhat the same advantages are obtained when we generalize the con-
ception of frequency to include complex as well as real values. In this
book we will use the idea of a complex frequency chiefly as a tool to specify
what kinds of network characteristics are physically realizable. The same
conclusions theoretically should be obtainable by the use of Fourier meth-
ods on the real frequency characteristic, but the mathematics required
with that treatment is much more difficult.

A curious and interesting qualification of this discussion of the relation
between the complex and real frequency response arises when we consider
the physical significance of a complex frequency in more detail. The
characteristics we are examining are, of course, those which correspond to
the steady state response of the network. Since we never have a network
which has been acted upon by a given voltage for an infinite length of time.
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the steady state is never realized exactly in any experimental situation.
We are accustomed to supposing, however, that a physical measurement of
the steady state response can be obtained with sufficient exactness with a
suddenly applied voltage if we delay the measurement until the transients
have had time to decay sufficiently. There is evidently no difficulty
about doing this when the driving voltage is a pure sinusoid. It is also
possible if the driving voltage lies on the right side of the p plane, since
then the steady state characteristic will emerge as an increasing exponential,
while the transient terms are dying out. If the driving voltage is suffi-
ciently far to the left of the p plane, on the other hand, the steady state ”
response will diminish with time even more rapidly than do the transients.
Evidently for frequencies in this part of the plane no physical measurement
can be made which will lead to a response which is chiefly determined by
the steady state characteristic of the network. Since the physical response
can always be computed from the real frequency characteristic by the Four-
ier integral method, this suggests strongly that the connection between the
steady state characteristics in the extreme left of the p plane and the
characteristics at real frequencies is somewhat tenuous. It should be
possible to manipulate the characteristics at the extreme left of the p plane
with considerable freedom without affecting the characteristics at real
frequencies appreciably, if at all. These possibilities have been exploited in
some branches of network theory. A description of these methods, how-
ever, is beyond the scope of this book.




CHAPTER 1III

FeeEpBACK

3.1. Introduction

Turs and the following three chapters are devoted to a general analysis of
feedback circuits and a discussion of the meaning of feedback. The princi-
pal object of the analysis is the development of a general feedback theory
in terms of the mesh or nodal equations of the amplifier as a whole without
distinction between u and 8 circuits. This is attempted partly because the
mesh or nodal formulation is the most satisfactory one for analytical work,
and partly because without such a general foundation it is difficult to pro-
vide a satisfactory theory for the multiple loop circuits which appear with
increasing frequency in current design practice. As an introduction to this
discussion, however, the present chapter gives a summary of the familiar
theory of feedback amplifiers in terms of g circuits and B circuits and also a
description of some of the commonest feedback arrangements. This part
of the discussion is given only in outline form since a general acquaintance
with feedback circuits is assumed in this book.*

3.2. Elementary Theory of Feedback Circuits

In its simplest form, a feedback amplifier can be regarded as a combina-
tion of an ordinary amplifier, or u circuit, and a passive network, or 8 cir-
cuit, by means of which a portion of the output of the u circuit can be

returned to its input. Such a combination is shown by Fig. 3.1. Both
the u and B circuits are, of course, actually four-terminal structures. The
circuits are represented by single lines in Fig. 3.1 for simplicity.

When a portion of the output voltage is returned to the input, the circuit

*See H. S. Black “ Stabilized Feedback Amplifiers,” B.S.T.J., or * Electrical
Engineering ” for Jan. 1934, also U. S. Patent No. 2,102,671. Good textbook refer-
ences are Terman “ Radio Engineer’s Handbook,” or “ Applied Electronics ” by
the Electrical Engineering Staff of ML1L.T.

31
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may, in fact, break into spontaneous oscillation. 1In this event the circuit
is normally inoperative as an amplifier. If we suppose for the moment that
oscillations are avoided, however, the characteristics of the structure can be
obtained without difficulty. It is merely necessary to recognize the fact
that the operation of the p and § circuits separately is fully defined by the
voltages appearing across their terminals, without regard to the fact that
they are parts of the feedback loop. For example, let Eq and Ejy represent,
respectively, the signal voltage applied to the input and the final voltage
delivered to the output, as is shown in Fig. 3.1, and let E; represent any
additional voltage supplied at the input by the return of a part of the output
voltage through the 8 circuit. Then the u circuit, operating as an ordi-
nary amplifier, must satisfy the equation

ER = ,U.(Eo + El). (3—1)

Similarly, if we let 8 represent the transmission characteristic of the 8

circuit, the voltage which it supplies at the input terminals must be given
by

E, = BE;. (3-2)
Upon eliminating E; between these two equations, we find '
Egr = uEy + uBEg, (3-3)
or in other words
"
= E,.
Ep 1 — g0 (3-4)

Without the 8 circuit, the output voltage would be given by Ep = uE,.
We therefore have the

Theorem: Feedback reduces the gain of an amplifier by the factor
1 — uB.*
The quantity u8 can be called the feedback factor.t It evidently repre-

* All the theorems in this chapter are to be taken as approximate, in the sense
that they will be superseded by the more general propositions given in Chapters V
and VI. We may also notice that in many statements of this theorem the factor
by which the gain is reduced is written as 1 + pf. The choice of the sign of uB
depends upon the way in which the phase shifts of the tubes are counted. Ordinary
vacuum tubes give a phase reversal of the signal, in addition to any phase shifts
contributed by the interstage impedances. In the standard p circuit containing ar
odd number of tubes, therefore, there will be one net phase reversal. If this is in-
ctuded as part of u the factor appears as 1 — ufB. If the phase reversal is counted
separately, on the other hand, the proper expression is 1 4 u8.

t Cf. Terman, loc. cit. p. 395. The term “ feedback * will be used in the follow-
ing chapters for a quantity analogous to 1 — ug.
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sents the transmission around the complete loop from the input of the
amplifier back to the input again. In ordinary practice, u8 is very much
larger than unity. Under these circumstances, equation (3—4) is con-
veniently rewritten as

Ey 1—-uBp
and since the first factor on the right-hand side of (3-5) must be substan-
tially unity in absolute value when 8 is large, we can conclude that the
gain of the amplifier varies approximately inversely with the transmission
through the 8 circuit or, in other words, is approximately proportional to
the 8 circuit loss. The error in this conclusion due to the departure of
[ u8/ (1 — uB) [ from unity will be called the uB effect or the u ervor in
subsequent discussion.

Equation (3-5) evidently implies that the gain of the amplifier may be
much affected by slight variations in the 8 circuit but that it is almost inde-
pendent of variations in . In order to show this more clearly. we may
differentiate (3—4), keeping 8 constant, to give

dEx__1_ds

Ep 1 —pBu
In this equation, the quantities dEg/Eg and du/u evidently represent corre-
sponding changes in the amplifier gain and in the gain of the u circuit

when both gains are expressed in logarithmic units, such as nepers or deci-
bels. We therefore have the

Br_ o _#8 1 (3-5)

(3-6)

Theorem: The variation in the final gain characteristic in db, per db
change in the gain of the u circuit, is reduced by feedback in
the ratio (1 — uB) : 1.

The final property of feedback of fundamental engineering importance
is the fact that it reduces the effects of extraneous noise or non-linear dis-
tortion in the u circuit. In a broad physical sense, extraneous noise and
non-linear distortion in any element can be regarded as  variations ” in
that element, and the sensitiveness of the circuit to such variations is
always correlated with its sensitiveness to normal variations in the value
of the element.* Fundamentally, therefore, this property is merely a
reflection of the theorem just established. In order to demonstrate it
independently, however, let it be supposed that a generator Dy is inserted
somewhere in the interior of the u circuit as shown by Fig. 3.2. D; may
represent either an extraneous noise voltage, such as would be produced, for

* This is shown generally in Chapter V.
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example, by a bad contact or by hum in the power supply, or it may be
taken to represent the voltages of the modulation products arising from
non-linear distortion in the g circuit. Let Eg represent the actual output

D,
Input D © D Ed Output
Line Pl 8] £, Line

Fic. 3.2

voltage which appears on the line in consequence of this noise generator and
let Dy represent the additional voltage which appears between p; and pg
by transmission around the uB loop. Since the total voltage at this junc-
tion is Dy + D; and the gain between this junction and the output line is
ug, we must have

E; = pz(Do + Dy). 3-7)

The voltage D; which is returned to the junction by transmission through
the 8 circuit and through g, is evidently given by

Dy = mBEs. (-8)

Upon eliminating Dy we therefore have

u2Do
E; = —/—— —

e (3-9)
where p has been written for the total gain wyus. Since the noise which
would appear in the output in the absence of feedback is usDo, this result is
equivalent to the

Theorem: The noise level in the output of a feedback amplifier is
reduced by feedback in the ratio (1 — pB): 1.

We cannot conclude from this that the signal-to-noise 7atio is reduced by
this factor, because feedback may also change the effective signal level in
the u circuit. An accurate statement can, however, be easily obtained by
comparing the structure with a non-feedback amplifier which has the same
final gain u/(1 — uB) and the same input and output voltages Eo and Eg.
The comparison is made most easily if we suppose that the complete p
circuit is broken up into y; and pg portions, as in Fig. 3.2, having respec-
tively the gains 1 — uB and p/(1 — pB). Then since both uy and the
comparison non-feedback amplifier have the same gain and deliver the
same output voltage Eg, they will have the same signal levels throughout,
and we can conclude that feedback is fully effective in improving the signal-
to-noise ratio for any noises originating in this part of the circuit. In gy,
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on the other hand, the signal level is less than it is in any portion of the
comparison amplifier and the improvement in the signal-to-noise ratio for
noises originating in this portion of the p circuit is consequently only
partial. At the input terminals of the first tube, where the signal is also
reduced by the factor 1/(1 — ug), feedback has no effect on the signal-to-
noise ratio. Feedback is thus a useful tool in combating troubles due to
modulation and perhaps power supply hum, in the case of tubes with
directly heated cathodes, which are characteristic of output stages. Itisof
little value, however, in dealing with noises due to thermal agitation, shot
effects, etc., which may be expected to be troublesome in the input stages.

The engineering importance of feedback circuits results from the possi-
bilities they present of diminishing markedly the effects of noises or varia-
tions in gain in the p circuit. The decrease in the external gain which
follows from the use of feedback is unfortunate and makes it necessary in
general to use a more complicated p circuit to obtain adequate final gain.
This, however, is an easy sacrifice to make to secure the improvements
which are available in other directions. As an example, we may consider
an amplifier having 40 db external gain and 40 db feedback. The u circuit
is then required to furnish 80 db gain, so that it represents an increase of
2 to 1 over the gain which would be required of a non-feedback amplifier.
For this 2 to 1 increase in the complexity of the u circuit, however, we secure
an improvement of 100 to 1 in its effective linearity and gain stability.

3.3. Types of Feedback Circuits

The principal circuit configurations useful in feedback circuits can be
classified most easily in terms of the way in which the x and 8 circuits are
connected to each other and to the line at the ends of the amplifier. The
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varieties of connections which may be made do not appear very clearly
from a single line drawing such as that of Fig. 3.1. Physically, however,
the  circuit, the 8 circuit, and the line must all be two-wire circuits. The
actual situation is therefore that shown broadly by Fig. 3.3 in which the
three circuits are connected together by means of a six-terminal network.
The classification of feedback circuits thus depends upon the forms which
these six-terminal connecting networks assume.



36 NETWORK ANALYSIS Cuar. 3

There may, of course, be an unlimited variety of six-terminal arrange-
ments to select from. The simplest ones, and the ones which appear to be
most useful are, however, shown by Figs. 3.4 to 3.8. In each structure, the
terminals are labeled in accordance with the notation used in Fig. 3.3.
Figure 3.4, for example, shows a series type of feedback circuit. The u
circuit is taken as a conventional three-stage amplifier, the interstage imped-
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ances being indicated by I; and I,. The 8 circuit is represented for con-
creteness as the  of branches 4, B, and C, but it may, of course, reduce to a
single branch or it may assume a still more elaborate form. The effective
line terminals ¢f and ¢/—f’ are indicated at the high sides of the trans-
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formers since the line and transformer characteristics evidently add di-
rectly.* The characteristic feature of this amplifier is the fact that the u
and B circuits, as seen from the line, are in series at each end of the amplifier.

Figure 3.5 shows a shunt type feedback system. The B circuit is here
represented as a T, but, as in Fig. 3.4, it may in general be taken as any

* It is also possible to feed back on the low sides of the transformers. In this
case the transformers become part of the u circuit.
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four-terminal structure.* The characteristic feature of this type of feed-
back is the fact that the u circuit, 8 circuit, and line are all in parallel at
each end of the amplifier.

Series and shunt feedback circuits are the simplest and probably the most
convenient arrangements for most applications. In ordinary circumstances
they are also the circuits which give a maximum amount of feedback.
They suffer, however, from two major disadvantages. The first, which is

3
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discussed in more detail in Chapter V, is the fact that in these circuits
feedback changes the impedance of the amplifier as seen from the line to
either a very high or a very low value. They are thus not convenient
arrangements to use with amplifiers which must have a good reflection
coefficient against the line. The second is the fact that the line impedances
form a part of the 8 loop. Variations in the line impedance may therefore
affect the pB characteristic and in some cases the effect may be great enough
to cause instability.

These difficulties are overcome by the use of a bridge type feedback
circuit, such as that shown by Fig. 3.6. This circuit includes three new
branches, represented by Z,, Z3, and Z, in Fig. 3.6, at each end of the
amplifier. A fourth branch, which is represented by Zj, is also included to
permit control of the input and output impedances of the g circuit if neces-
sary.t The three new branches, together with the impedances of the
u circuit, the g8 circuit, and the line, give a network having a total of six
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* It should be noticed, however, that if the 8 circuit in Fig. 3.4 were chosen as
a T, or that in Fig. 3.5 as a 1, the extreme branches could in either case be assimilated
as part of the line impedances. Since the insertion of unnecessary impedances in
the line is likely to waste power, it is clear that these are unacceptable configura-
tions unless the contributions of the extreme branches are so small as to be almost
meaningless. The configurations actually shown in Figs. 3.4 and 3.5 are thus repre-
sentative of those which would be appropriate in practical cases. These considera-
tions are discussed in more detail in subsequent ghapters.

T See the discussion of the effect of omitting Z, given later in Chapter V.
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branches. Ifanyone of the six is taken as a generator impedance, the remain-
ing five can be arranged as the four arms of a bridge plus a galvanometer
arm. For example, if the generator impedance is taken as the line, the
galvanometer arm becomes the 8 circuit impedance. When the bridge is
balanced in this arrangement the ug loop is independent of the line imped-
ance. The conjugacy between the line and the 8 circuit also destroys the
effect of feedback on the amplifier impedance so that it becomes compara-
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tively easy to secure a moderate impedance which can be adjusted to match
a given line by controlling the elements in the bridge.

The bridge type circuit suffers from the general disadvantages that it
may require extreme impedance levels and that a portion of the output
power may be consumed by the branches added to secure a bridge balance.
These difficulties can be ameliorated by replacing the bridge by a three-

1 t, f/
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winding transformer or hybrid coil. In view of the several known equiva-
lences between a bridge and a three-winding transformer, there are several
ways in which this substitution may be effected. Figure 3.7, for example,
shows a “ high-side ” hybrid coil feedback. In this case Z, represents the
“ balancing ”” impedance. Figure 3.8 shows a “ low-side ” feedback.

In the preceding figures, the same circuit connections have been shown
at each end of the amplifier ag a matter of simplicity. The number of
available configurations, however, is much increased by the possibility of
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combining different connections at input and output. For example,
Fig. 3.9 shows a series connection at the input terminals in combination
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with a shunt connection at the output. Figure 3.10 shows a combination
of series input and hybrid coil output.

3.4. Cathode Feedback Circuits

In addition to these general arrangements, a wide variety of other feed-
back circuits may be used in practice. A particularly important example,
for practical purposes, is furnished by the so-called *“ cathode ** feedbacks.
These may exist in two forms, depending upon the number of stages in the
p circuit. In either case, the arrange-
ment is essentially a modification of a
series feedback amplifier. Figure
3.114, for example, shows a series
feedback for two stages in compari-
son with the corresponding cathode
feedback shown by Fig. 3.11B. The
B circuit is represented by the single
branch Zg. In this instance, the
cathode connection is used to secure
aphase reversal. As the discussion in
Chapter I pointed out, the successive

[~
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tubes in the p circuit produce successive phase reversals. With an odd
number of tubes it turns out that the net resulting phase is of a sign suitable
for feedback without instability. If there are an even number of stages as
shown by Fig. 3.114, however, the current delivered by the u circuit has
the wrong sign for direct return to the input. This is avoided in Fig. 3.118
by crossing the terminals in the 8 circuit to secure an additional phase
reversal. The circuit is called a ““ cathode ” feedback because the cathode
of the first tube is off ground.*

;
3
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The use of a cathode feedback circuit to replace a corresponding series
feedback circuit when the g circuit contains an odd number of stages is
shown by Fig. 3.12. Here the cathode feedback is introduced principally
to minimize distributed capacities to ground. As Fig. 3.124 shows, the
conventional series feedback circuit is grounded at the cathode junction,
P;. The junction Pj, to which the transformers are connected, is off
ground and their capacities to ground fall effectively across the 8 circuit.
No improvement is obtained by transferring the ground terminal from P,
to Py because this leaves the ground capacity of the u circuit, which is at
least equally large, to be accounted for. The total capacity can, however,
be minimized by grounding most of the forward circuit in the manner
shown by Fig. 3.12B. Since the cathodes of both input and output tubes
are off ground there is no net phase reversal.

A special feature of the cathode circuits is the fact that some feedback
may exist for the tubes whose cathodes are off ground even when the
remaining tubes are dead. Thus in Fig. 3.11B the plate current for the

* We can evidently cross terminals without a change in ground by including a
transformer in the loop. In ordinary situations, however, the inclusion of a trans-
former so restricts the available feedback, as determined by the methods described
later, that Fig. 3.11 represents a preferable solution.
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first tube can return to its cathode only by flowing through the 8 circuit
impedance, so that some voltage would be returned to the first grid even
if the second tube were removed. In Fig. 3.12B a similar situation holds
for both the first and third tubes.

Speaking rather roughly, we can suppose that the 8 circuit impedance
operates independently in producing this residual feedback and in produc-
ing the principal feedback. For example, Fig. 3.13 gives the approximate
equivalent of Fig, 3.12B under this method of treatment. It is obtained

Fic. 3.13

from the original series feedback amplifier of Fig. 3.12.4 by inserting new
impedances equal to the 8 circuit impedance in the cathode leads of the
first and third tubes. The first and third tubes can evidently be regarded
by themselves as miniature feedback amplifiers of the series type. These
tubes thus have more total feedback than would appear if we considered
only the transmission around the principal loop. On the other hand, since
the local feedback reduces their gain, the transmission around the principal
loop will be decreased unless some compensating change is made.

3.5. Multiple Loop Feedback Amplifiers

The circuits of Figs. 3.118 and 3.12B are examples of multiple loop
amplifiers, or in other words of amplifiers in which voltage can be returned
to some of the grids by more than one path, so that the effective feedbacks
on the various tubes are different. In these particular structures the
subsidiary paths are accidental results of the type of feedback connections
adopted. In current amplifier development, however, there appears to be
an increasing tendency to turn to multiple loop circuits deliberately in
order to obtain results not available from single loop structures.

One simple type of multiple loop structure is shown by Fig. 3.14. The
circuit is a series feedback amplifier with additional feedback on the last
tube through the insertion of an impedance in its cathode lead. The
structure is thus similar to the *“ equivalent ”” amplifier previously shown by
Fig. 3.13, except that since the local feedback is now produced by the
impedance Zgg, which is independent of the principal feedback impedance
Zpy, it can be chosen arbitrarily. We can look upon the circuit as a device
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for securing more reduction in the non-linear distortion in the last tube than
can be obtained, according to the principles laid down later, by feedback
around the main loop alone.

Fic. 3.14

Figure 3.15 shows a second type of multiple loop structure. It is similar
to that shown by Fig. 3.14 except that the local path represents shunt rather
than series feedback. The subsidiary path may be regarded either as a

Frc. 3.15

branch deliberately added to improve the characteristics of the output
tube, as in Fig. 3.14, or as a representation of a large parasitic grid-plate
capacity, such as is found, for example, in the power triodes used for radio

broadcasting.
$ 0 ] $
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Still a third example is shown by Fig. 3.16. Here local series feedback
is applied around the first two stages of the complete u circuit. We may
imagine the local feedback to be regenerative, so that it provides a higher
pB gain around the complete loop than would otherwise be obtainable. In
addition to the particular structures shown by Figs. 3.14 to 3.16, many
other multiple loop amplifiers can evidently be secured either by combining
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two or three of the local feedback paths shown by these figures in a single
amplifier or by providing still more paths.

3.6. Other Feedback Circuits

The preceding sections have been intended as a brief sketch of the types
of physical configurations directly envisaged in this book. They are com-
posed characteristically of linear vacuum tubes and passive elements.
Feedback circuits may, however, also be designed to include non-linear or
non-electrical elements. Many of these are sufficiently similar in funda-
mentals to a linear electrical circuit to be treated by the same methods,
provided the proper precautions are taken.

The diversity of applications will be indicated by two illustrations. The
first consists of a feedback circuit including frequency translating devices.
Figure 3.17, for example,shows
a radio transmitter in which [Carrier Mod. ] <

. . I N
a portion of the output is de-
modulated and returned to
the signal input as voice fre-
quency or ““envelope ” feed- -
back. If the modulator and Veice
demodulator are nearly ideal
and the carrier frequency is
much higher than the voice band this can be analyzed essentially as a lin-
ear circuit. It is merely necessary to consider the transmission of an
equivalent voice frequency around the complete loop. If the modulator
outputs include a variety of products which can be transmitted around
the loop, however, or if the carrier frequency is within a few octaves of the
top of the voice band, the situation is more complicated and will not be
considered here.

The second general example is furnished by regulator circuits for such
purposes as speed, voltage, or frequency control. Here the fact that the
control circuit acts as a valve, producing a large change in output for the
comparatively slight expenditure of energy required to change the control,
gives an equivalent of vacuum tube amplification. The use of a portion
of the output to adjust the control circuit is, of course, feedback. There
is no definite useful band, in the sense in which this term is ordinarily
understood in communication circuits, but an approximate effective band
can ordinarily be assigned the circuit from a consideration of the rapidity
with which the controls should operate. The essential problem, of course,
is to avoid hunting, which is the equivalent of instability in a feedback
amplifier.

Fic. 3.17



CHAPTER IV

MaTtHeEMATICAL DEFINITION oF FEEDBACK

4.1. Introduction

THE conception of a feedback amplifier developed in the preceding
chapter can be summarized in the following words: The amplifier consists
of a forward or u circuit and a backward or 8 circuit. The feedback can
then be determined from the product ug, which represents the transmission
around the complete loop formed by the u and 8 circuits together. The
circuit has the fundamental physical property that the effects of variations
in the p circuit, whether they are taken as changes in the normal u gain or as
departures from strict linearity or from freedom from extraneous noise,
are reduced by the factor 1 — uB in comparison with the effects which
would be observed in a non-feedback amplifier.

This set of conceptions is almost indispensable in describing a feedback
amplifier or in reasoning generally about the functions of the various parts.
They will be retained here for this general purpose. For future analytical
work, however, they are extended in this chapter to provide a purely mathe-
matical definition of feedback. The mathematical definition is framed in
terms of the general mesh or nodal equations introduced in the first chapter.
The system of equations is taken with reference to the complete amplifier,
without distinction between p and B circuits, so that these conceptions
disappear from the formal analysis.

This change is made for two reasons. The more obvious one is the fact
that the mesh or nodal analysis furnishes a convenient foundation for
further theoretical work. It is especially appropriate in discussing the
relationship between feedback and stability.

The second reason for developing a general definition of feedback in
terms of the equations of the circuit as a whole is that it allows us to avoid
the ambiguities and uncertainties which appear if we rely exclusively upon
an analysis in terms of separate p and 8 circuits. The u and 8 analysis
supposes that these circuits are clearly distinguishable entities to which can
be ascribed definite properties independently of one another. This was
suggested, for example, in the generalized sketch shown by Fig. 3.1 of the
preceding chapter. In fact, however, the actual physical configurations
shown by the figures which appeared later in the chapter do not permit
such a clear-cut separation between the two circuits so that what we are to

44
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call u and what 8 remains somewhat vague. Since the properties of gain
stabilization and distortion reduction hold only for the u circuit, and the
eventual gain is determined by the g circuit, this is a matter of considerable
importance.

The simplest example of the difficulty of distinguishing sharply between
 and 8 is furnished by the computation of gain from the familiar equation

0. H*
1 —wus

The computation requires a knowledge of p and uB. The product pg,
representing the transmission around the loop, is itself well defined. The
& which must be used in order to make the equation an accurate expression
for the amplifier gain is, however, not so apparent. It depends in part upon
the way in which the current divides in the six-terminal connecting net-
works shown at the ends of the amplifier in Fig. 3.3 of the preceding chapter.
In evaluating x we must therefore make some allowance for the 8 circuit
impedance, instead of removing 8 entirely, since otherwise the division of
current in these networks will, in general, be changed. For particular cir-
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cuits ¢his can be examined by setting up detailed circuit equations, but
without further theoretical study it is difficult to see, in general, just what
branches of the 8 circuit should be included in making the allowance, and
in any event it is clear that the problem of designing a g circuit to give a
specified external gain characteristic may be confused by the fact that any
elements we put in affect both p and pg.

The difficulty of separating the amplifier into 4 and g parts may become
much greater in a multiple loop structure containing several feedback
paths. A particularly extreme example is furnished by the cathode feed-
back circuit shown by Fig. 3.12B in the preceding chapter. As drawn
there, the circuit includes only the elements which would be supplied in the
design process. In a physical embodiment, however, it would be necessary
to consider also the parasitic capacities between grid and cathode and
between plate and cathode in each tube. When these are added the circuit
appears in the form shown by Fig. 4.1. For design purposes it is possible to
divide the elements of the circuit into a group which is most important
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in determining forward gain and another which is chiefly effective for feed-
back. Itis clear, however, that no sharp division into u and 8 circuits can
be made. Every element in the structure enters to some extent into both
forward and backward transmission.

4.2. Return Voltage and Reduction in Effect of Tube Variations

The consideration of multiple loop structures leads to another reason for
developing a general mathematical definition of feedback, which may be
less obvious than those previously discussed. 1In a single loop structure the
fundamental quantity appears to be the loop transmission u8. This is the
same as the return voltage which would appear by transmission around the
complete loop if we applied a unit voltage to any grid and opened the circuit
just behind it. In such a structure we know that the factor measuring the
reduction in the effect of tube variations is 1 — ug, so that it is always
closely correlated with the return voltage.

In a multiple loop structure voltages may be returned to the grids of the
tubes by various paths which differ from tube to tube. For any particular
tube, however, the total return voltage can be
obtained, at least on paper, by adding together
the contributions from all available paths through
the network. This is illustrated by Fig. 4.2.
N represents the complete circuit exclusive of the
tube in question and P; and P,, connected to-
gether, the grid terminal for normal operation.
The return voltage can then be defined as the
voltage which would appear between P; and G in response to a unit voltage
between P, and G when the connection between P; and P; is broken. The
grid-plate and grid-cathode capacities C; and Cy are shown asgoing to P; to
indicate the fact that opening the loop should not disturb the admittances
seen from the end point P;.

Given any individual tube, it is also possible to determine the ratio
between a prescribed small variation in its gain and the resulting change in
the transmission characteristic of the complete circuit. It is natural to
suppose that the correlation between this ratio and the return voltage on
the tube will be the same for a general circuit as it is for a single loop
structure. This is substantially true in the simplest and most common
circuits. In exceptional circuits, however, the actual effect of individual
tube variations on the final transmission characteristic may be much greater
or much less than would be predicted from the return voltage. One of
the objects in setting up a general mathematical definition of feedback is
therefore to determine when the return voltage computation is a reliable

Fic. 4.2
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index of the effect of tube variations and what corrections must be applied
when it fails,

One other aspect of the general situation deserves attention. Since the
vacuum tubes are ordinarily the most variable and non-linear constituents
of a complete amplifier, feedback is of engineering importance chiefly in
correcting for their characteristics. An incidental result of the application
of feedback, however, is the fact that it also reduces the effect of variations
in some of the bilateral elements of the circuit. The effects of variations
in the elements of an interstage impedance, for example, are reduced by
feedback to the same extent as are those of variations in the transconduct-
ances of the associated vacuum tubes. In any discussion of the relation
between feedback and the effects of element variations, it is therefore
legitimate to extend consideration to bilateral as well as unilateral elements.
The analytical treatment of feedback developed in this chapter applies, in
fact, equally well to elements of either type. In order to simplify exposi-
tion, however, each step in the development is introduced as though uni-
lateral elements only were in question, the extension of the analysis to
bilateral elements being described subsequently.

4.3. Return Ratio, Return Difference, and Sensitivity

The preceding section has indicated that the usual conception of feedback
includes two distinct ideas. The first is that of a loop transmission or
return of voltage, and the second that of a reduction in the effects of varia-
tions in the tube characteristics. In normal circuits these two are related
by simple mathematical laws so that the term “‘ feedback ” can refer
generically to both.

In exceptional circuits, when the correlation between the two breaks
down, the first idea is evidently the one which most nearly agrees with the
usual physical conception of feedback. It will therefore be taken as the
basis for the definition of feedback in the general case. To prevent any
possible confusion, this idea will also be described by the new name return
difference. It is still worthwhile, however, to retain the general idea of a
reduction in the effects of tube variations. This will be referred to by the
name Sensitivity.

The return difference, or feedback, and the sensitivity will be repre-
sented by the symbols F and §, respectively. They are to be regarded as
the analogues, in general, of the quantity 1 — uf in a single loop structure.
Thus, “ return difference ” is an abbreviation for * return voltage differ-
ence,” meaning by this the voltage difference existing between P; and P,
in Fig. 4.2 under the conditions of measurement indicated there. The
quantity 1 — pB, rather than up itself, is chosen as the fundamental unit,
because it turns out to lead to simpler and more compact formulae in most
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situations. In order to have a symbol corresponding to the loop trans-
mission uf itself, however, we will also write F = 1 + T. Thus, T = —uB
in an ordinary amplifier.* T will be called the return ratio. To complete
the nomenclature, we might similarly introduce a symbol for the quantity
§ — 1, but the number of occasions when such a symbol would be useful is
too small to make this step worthwhile.

4.4. Definitions of Return Ratio and Return Difference

In order to secure more precise definitions of the quantities described in
the preceding section, let the input of the general circuit be taken as the
first mesh or node, and the output as the second mesh or node. We will
also suppose that the grid and plate terminals of the tube under examina-
tion are labeled respectively 3 and 4, and that its transconductance or
mutual impedance is represented by #”. # is thus a constituent of Z43 or
Y43 in the general system of mesh or nodal equations. In later sections the
definitions of return ratio and return difference will be extended to bilateral
elements. The form of these statements remains the same when # is a bi-
lateral element, except that it is taken as a constituent of the self-impedance
or admittance Zsg or Y3s, rather than of the coupling term Z,3 or Yy3.

The loop transmission or return voltage in Fig. 4.2 can be obtained by
multiplying the transimmittance, #, of the tube itself by the backward
transmission from the plate to P;. In making the latter calculation, the
open circuit which appears between P; and P can evidently be represented
by supposing that P; and P, are connected together, as in normal opera-
tion, but that the tube is dead. If we let A represent the circuit deter-
minant when # = 0, therefore, equations (1-10) and (1-24) of Chapter I
give the backward transmission as A43/A%  Since the negative sign intro-
duced by the phase reversal in the tube is canceled by the fact that T is
analogous to —uB, we therefore have

Ags |

= (1)

F=14T=14Ww

But it follows from the discussion in connection with equations (1-11) to
(1-14) that A® 4 A A4s is the value which the circuit determinant assumes
when the tube transimmittance has its normal value 7. If we represent
the normal circuit determinant by the usual symbol A, therefore, equa-

* The introduction of the minus'sign may be explained by the fact that an ordinary
feedback amplifier contains an odd number of tubes, which contribute an odd number
of phase reversals to the loop. Thus 7, as defined, is equal to the loop transmission
without these phase reversals, and will ordinarily be a positive quantity except for the
effects of possible phase shifts in the interstage or feedback networks. The sign chosen
for T'is also more convenient in dealing with bilateral elements.
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tion (4-1) can also be written as
F=5 (+-2)

In order to emphasize the importance of this last formula, and to pave the
way for the treatment of bilateral elements in a subsequent section, the
relation embodied in (4-2) will be restated as the

Definition: The return difference, or feedback, for any element in a
complete circuit is equal to the ratio of the values assumed
by the circuit determinant when the specified element has
its normal value and when the specified element vanishes.

Equation (4-2) probably represents the most convenient working for-
mula for the analytic treatment of feedback. A number of examples of its
use in feedback circuit analysis will be given in the next chapter. The
fact that the equation expresses F'in terms of the determinant of the system
is particularly convenient in studying the relation between feedback and
stability since, as we shall see later, the roots of the determinant tell whether
or not a system is stable. The formula is also especially useful in studying
multiple loop systems, since if we once know the determinant we can
readily evaluate the individual feedbacks without making a complete sepa-
tate calculation for each tube.

4.5. Return Difference for a General Reference

It is convenient to introduce here a generalization of the conception of
return difference whose meaning will probably not be fully apparent until a
considerably later point. In developing equation (4-1), we based the
calculation, in a sense, upon the reference condition of the circuit obtained
by setting ## = 0. Thus the backward transmission from plate to grid was
obtained for this condition of the circuit, and the forward transmission 7,
by which the backward transmisston was multiplied to produce the com-
plete loop gain, may be thought of as #7 — 0, or the surplus of the actual
tube transimmittance over this reference value.

We can evidently perform a similar computation for any reference con-
dition # = k. The “ loop gain,” then, becomes the effective transimmit-
tance, /7 — k, multiplied by the backward transmission from plate to grid
evaluated for the condition /7 = k. Since the tube is no longer completely
dead, this backward transmission must include the effects of a certain
amount of physical feedback, but this is a practical rather than a theoretical
complication. The reference £ can be anything we like. For example, it
might be the value of transimmittance at which the tube would be dis-
carded in favor of a new one, or it might be the transimmittance which



50 NETWORK ANALYSIS Cuar. 4

would lead to a certain specified gain through the over-all circuit. The
latter condition is the one which will be used in future applications of this
concept.

The return ratio and return difference resulting from this computation
will be spoken of as the return ratio and return difference of # for the
reference k. If F}, represents this return difference, we evidently have

A
F,,.—.1+(W—k)ﬁ, (4-3)
where A¥ is the value assumed by A when # = k. But since
AF = A® 4 kA4 and A = A® + W A3, where A is, as before, the value of

A when W = 0, equation (4-3) can be rewritten as

Fp=—" (44)

This equation is obviously analogous to (4-2) and, like (4-2), will be
regarded as a definition in future discussion.

Equation (44) leads to an easy method of computing the return differ-
ence for the reference % from the return difference for zero reference.

Thus, if we multiply and divide the right side of (44) by A°, we have
A A0
FsW) = o 7%
(4-5)

_E0)
T F(k)

Stated in words, this result is the

Theorem: The return difference of & for any reference is equal to the
ratio of the return differences, with zero reference, which
would be obtained if # assumed, first, its normal value, and,
second, the chosen reference value.

The conception of a return difference for a reference other than zero will
be utilized at the end of this chapter. Meanwhile, it can be assumed that
the term * return difference ” applies only to the zero reference case.

4.6. Return Difference for a Bilateral Element

In setting up equation (4-2) as a definition of return difference, we evi-
dently extended the analysis formally to bilateral as well as unilateral ele-
ments, since A and A are meaningful quantities for elements of either type.
The physical significance of the return difference of a bilateral element, on
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the other hand, is most easily studied if we replace (4-2), for a bilateral
element, by an equation more nearly in the form of (4-1). This is readily
done. Thus, if # is a constituent of Y33 or Zzs, we evidently have
A = A® 4+ WAgs in the bilateral case. Substitution of this relation in
(4-2) gives

F=1+T=1+W%§,—3, (4-6)

which is like (4-1) except that A43 is replaced by Ass.

The meaning of the return difference for a bilateral element is easily
understood from an examination of the terms in (4-6). Let it be sup-
posed, for example, that # represents an impedance. 'Then A/ Az repre-
sents the impedance which would be seen by a generator in the mesh con-
taining # if W were zero. In other words, it is the impedance which
W faces. The return ratio T = W A33/A" is therefore equal to the ratio
of the impedance # to the impedance presented to /# by the rest of the
circuit. The return difference F is equal to the ratio of the complete imped-
ance, including 7, to the impedance of the external circuit. Similarly, if #
represents an admittance, the return ratio T and the return difference F
are, respectively, equal to the ratio of the admittance #” to the admittance
of the rest of the circuit, and the ratio of the admittance of the complete
circuit, including 77, to the admittance of the rest of the circuit.*

Viewed in this light, the conception of return difference for a bilateral
element appears as an expression of the fact that a generator with internal
impedance cannot be fully effective in driving an external circuit. The
internal voltage drop is the “ returned ”’ voltage. Itis *“ returned ” to the
source in the sense that it is unavailable to drive the external circuit.
Thus, suppose that % is the impedance Z and that the impedance of the
external circuit is represented by Zo. In the absence of Z a unit generator
would produce a current 1/Z in the circuit. The insertion of Z into a cir-
cuit carrying this current is equivalent to adding or  returning > the volt-
age —Z/Zo to the source. The current strength is not supposed to be
changed when Z is added since this is the logical equivalent of opening the
loop in the unilateral case to prevent the return voltage itself from produc-
ing a response. The return difference is then the difference between the

* These relations hold, of coutse, for both active and passive circuits. If the circuit
does in fact contain vacuum tubes, however, it is important to notice that the imped-
ance assigned to the external circuit must be the active impedance obtained when the
tubes are lit. This may be quite different from the impedance which would be
obtained from the passive elements alone. Methods of computing the active imped-
ance from the passive impedance are described in the next chapter.
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original and the returned voltage and measures the net voltage available to
drive the external circuit.

4.7. Definition of Sensitivity

We turn now to the second leading conception of the present chapter,
that of sensitivity. This conception can be illustrated by reference to
equation (3-6) of the preceding chapter, which appeared as

Ep 1 —puB u -6)

Evidently, the equation states in effect that 1 = p8 is the factor relating

any given percentage variation in the u circuit to the resulting percentage

variation in the output voltage. In other words, 1 — u81s a measure of the
sensitiveness of the over-all circuit to small variations in u.

Equation (3-6) is, of course; limited to the u elements in an ordinary

feedback circuit. In order to generalize appropriately to any circuit, let

the gain through the complete system be represented by 6. We then have
the

Definition: The sensitivity, S, for an element # is given by

1
§ = % (4-7)

dlog W

The definition is intended to apply to both unilateral and bilateral elements.

The relation between (4-7) and (3-6) may be made more apparent if
we express 8 in terms of the logarithm of the output voltage Eg, and replace
the partial derivative by ordinary differentiation, on the assumption that
W is the only element in the circuit which varies. This allows (4-7) to be
written as

dE 1 dww
“BR _ 247, (4——8)

Thus, § is the ratio between a given percentage change in 77, in the general
case, and the resulting percentage change in the delivered voltage Eg, just
as 1 — uB expresses the corresponding ratio between changes in u and Eg
in the special case of the single loop amplifier.

In an average situation, we may expect S to be of the order of magnitude
of unity. In an ordinary non-feedback amplifier, for example, the over-all
gain varies by 1 db for each db change in the gain of any one of the tubes,
and S for any tube is evidently 1 exactly. On the other hand, § may be
much greater than unity. Thus, ignoring phase angles, if the final gain
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varies by 0.01 db for 1 db variation in 7, the sensitivity §is 100. Thisis
the result we would expect for the elements in the forward circuit of an
amplifier with 40 db feedback. We might also secure such a result, how-
ever, even in a purely passive circuit, if # were an impedance element
having comparatively little to do with the over-all transmission.

It is also possible for § to be much smaller than unity. This might occur,
for example, in a regenerative amplifier at the point of singing or in an
ordinary circuit which depends on a critical bridge balance or on sharply
tuned reactance branches.

It is to be noticed that in the discussion of the return difference we
labeled the input and output terminals of the system, but the input and
output terminals did not actually enter into the analysis. Since the
sensitivity, on the other hand, depends upon the transmission through the
circuit, it must in general depend upon the nodes or meshes which we choose

to regard as the terminals of the system, as well as upon the chosen element
W itself.

4.8. General Formula for Sensitivity

The definition of sensitivity given by equation (4-7) can be made more
concrete by an examination of the functional relationship between 6 and 7.
If we retain the notation used in the preceding sections and represent the
output impedance or admittance by #g, the gain through the circuit can be
written in the general form

o= 22p (4-9)

The discussion of Chapter I shows, however, that both A;» and A must be
linear functions of #. If we let AY; and A° represent the values of these
determinants when /77 = 0, we can therefore write equation (4-9) as

o Ay + WAz

= A Wy. (4-10)

This equation of course holds for any value of #7. For purposes of future
discussion, it will be convenient to pay particular attention to the case
when # is zero. 'The gain under these conditions constitutes the so-called
direct transmission gain* If we let 6, represent this gain, we evidently
have

o = 212 (4-11)

* So-called because it represents a current transmitted directly to the output,
without the intervention of the element /.
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Returning to the general formula (4-10), if we apply the definition of §
given by (4-7) to it directly, the result, after some manipulation, appears as
1 (A% + W iass) (A° + WAgs) |
w A%Aygs3 — AlzAgg

S = (4-12)
This can be simplified by means of a general identity in determinant theory,
which is of frequent application in network analysis. The identity is*

AAab,cd = Agpleq — AadAcb, (4—13)

where A is any determinant, @ and ¢ are any two rows of A, and 4 and J are
any two columns of A. If we let A® of (4-12) be the general determinant A
which appears in this equation and make the proper 1dent1ﬁcatxons of
subscripts, this allows (4-12) to be written as

- L Al (4-14)

W A13lgo .
If we assume that 7 is a bilateral element in Z33 or Yis, rather than a uni-
lateral element in Z;3 or Yys, all the steps from (4-9) to (4-14) can be
repeated exactly, except that each subscript 4 is replaced by a subscript 3.

4.9. Return Difference and Sensitivity in Simple Cases

The general formula (4-14) in the preceding section was developed
largely as a matter of completeness. In actual practice, it is ordinarily
easier to evaluate the sensitivity indirectly from the return difference.

In general, the sensitivity and the return difference for a given element
are not equal, so that if we are to calculate § from F it is first necessary to
establish the relation between them. This will be the subject of the next
several sections. For the moment, however, it is convenient to dispose
of the especially simple case when the two are, in fact, equal. This occurs
when the direct transmission term (4-11) vanishes. If we assume, then,
that A, is zero, the analysis of the preceding section becomes very much
simpler. Thus, if we substitute this condition directly in equation (4-12),
we readily find

A THAs_ A (4-15)

This, however, is exactly the same formula as the one which was developed
for the return difference in equation (4-2). We therefore have the

Theorem: The sensitivity and return difference are equal for any ele-
ment whose vanishing leads to zero transmission through
the circuit as a whole.

* See, for example, Scott and Mathews Theory of Determinants, p. 64.
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The most familiar examples of elements meeting this condition are
probably the tubes in the forward circuit of an ordinary feedback amplifier.
We can assume, for practical purposes, that the transmission through the
structure will be zero if any one of the tubes fails. In strict accuracy, this
is seldom exactly true. Some current will ordinarily* trickle through the
B circuit into the load, even when u = 0. 'This trickle, however, is usually
so much smaller than the normal output current that it can be neglected,
so that the forward circuit can be regarded as falling within the scope of the
theorem for practical purposes. In this case, of course, the theorem express-
es nothing new. Since the theorem requires no assumption except that of
negligible direct transmission, however, its application can evidently be
extended to circuits which differ fairly substantially from the conventional
single loop configuration.

In the field of bilateral elements, simple examples of the theorem are
obtained from series-shunt or ladder networks. We can obtain zero trans-
mission when %7 = 0 in circuits of this type by
adopting an impedance analysis if 7 represents
an element in shunt, or an admittance analysis if
W is an element in series.

A specific example is furnished by the circuit
of Fig. 43. The transmission is supposed to
take place from Z; to Z,, while Z represents the
variable /7. The return difference is an impedance ratio which can be
written down by inspection as

Fic. 4.3

s
Fe 2y + Zo _ ZiZy + Z(Zy + Zo) (4-16)
ZyZy ZyZoy
Zy + Zy

On the other hand, the current flowing in Z, in response to a unit generator
in Z, is given by

z
? = . 4-17
= 27T 22+ Za) #17)
Hence,
4o Z1Zs z (4-18)

T ZZa+ Z(Zi+ Z2) Z

Since the coeflicient on the right-hand side of (4-18) is 1/8, by (4-8), the
theorem is verified for this case.

* That is, in the absence of a balanced bridge at either input or output.
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A second example, this time for a bridge circuit, is furnished by Fig. 4.4.
The transmission is from Z; to Zg and the variable element is taken as
Z, the remaining impedances being so chosen
that the bridge is balanced when Z vanishes.
For simplicity, let every impedance but Z
be taken as 1. This makes Z and Z4 con-
jugate so that Z, can be removed in deter-
mining the impedance which Z faces. With
the help of this simplification, we readily
find that Z faces the impedance 2. We
therefore have

4

~CGD

dy = —_22. 4-19

Fic. 4.4 24272 Z ( )

This can be verified by direct consideration of the transmission equations
for the bridge, but the algebra is too lengthy to be included here.

4.10. Circuits with Appreciable Direct Transmission

We turn now to situations in which the assumption of negligible direct
transmission is no longer valid. Instances of elements giving a substantial
direct transmission term are readily found even in conventional single loop
amplifiers. For example, the 8 circuit elements belong generally to this
class, as do many of the elements in customary input and output circuits.
In the field of passive circuits, the elements of bridge type networks are
usually of this type.*

More difficult situations involving a substantial amount of direct trans-
mission may be found if # is the transimmittance of a tube in a multiple
loop circuit. An example is shown by Fig. 4.5. The structure is drawn as
a single stage feedback amplifier but it may also be taken as the last stage
in the double loop feedback structure shown by Fig. 3.14 of the preceding
chapter. The impedances Z; and Zjz can be regarded as the terminating
impedances in the single stage case. Zs represents the feedback branch and
Zy and Z, are, of course, parasitic grid-cathode and plate-cathode imped-
ances.

When the gain of the tube vanishes, the circuit reduces to the form shown
by Fig. 4.6 and in the single stage case the transmission through this net-
work evidently represents the quantity ¢% defined in equation (4-11). By
proper adjustment of the elements Z,, Z3, and Z,, the transmission through
this path can be made anything we like in comparison with that through

* That is, in the absence of special situations like that of Fig. 4.4, where the bridge
is supposed to balance when the variable element is zero,
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the tube. For example, if Z3 is very small while Z; and Z, are quite large,
the direct transmission becomes insignificant. If we make Z; and Z,
small enough, however, and Z3 very large, it may be much more important
than the transmission through the tube. By proper adjustment of the
impedances, we can also secure an intermediate case in which the two
paths exactly cancel, so that the net output under operating conditions is
zero. In ordinary physical cases, Z3 will, of course, be small, while Z; and
Z,4 will be quite large so that we can regard the directly transmitted current
as being much smaller than that flowing through the tube.

yagnN
30
7 z}
Zg)
E
Fic. 4.5 Fic. 4.6

When the circuit represents a complete amplifier, this means that the
directly transmitted current can be neglected in any ordinary situation.
If the circuit is the last stage of a multiple loop structure, on the other
hand, the rest of the structure must also be considered in determining the
direct transmission to the final output impedance. In this case, even a
slight trickle of current directly through the passive elements of Fig. 4.6
may be important in some circumstances. The reason for making this
distinction will appear in a later section.

4.11. General Relation between Sensitivity and Return Difference

When the direct transmission is substantial, it is simplest to use it as a
reference from which the remainder of the actual output voltage or current
is calculated. We are then concerned explicitly only with the difference
between the normal output and the directly transmitted term. Thus, from
(4-10) and (4-11) we can writ.e

A + A Ad
o _ 8 _ D12 1248 oy 812 g
£-¢ A Wh, BT A0TE
W (8°A1243 — AJ2As3)
AO(AO A Wr. (4-20)

This can be simplified with the help of the general relation (4-13). The
result is
P —W 13442

o= L1 421
ol AN+ Hhes) T @20
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Let us now consider the ““ sensitivity ” of the quantity ¢ — &%, using the
term in our customary fashion to-mean the ratio between a given percent-

age variation in # and the corresponding percentage variation in ¢ — %,

As a function of #, the right-hand side of (4-21) is very like (4~10) in. the
special case A, = 0. The only difference is the fact that Ajs43 in (4-10) is
replaced by ~A13443/A%in (4-21). But when we calculated the sensitivity
from (4-10) for the special case A}y = 0, we were led to (4-15), which does
not depend upon Ajszs. We may therefore draw the following conclusion:

Theorem: The sensitivity of the difference, ¢ — ¢%, between the
normal output and the direct transmission for any element
W is equal to the return difference for 7.

This result, of course, includes our earlier theorem on circuits with zero
direct transmission as a special case. If we begin with that earlier theorem,
the present result is an obvious one for a circuit composed of two inde-
pendent parallel paths, one of which contains #” and has no direct trans-
mission, and the other of which furnishes the over-all direct transmission
and is independent of 7. This is a situation which is very unlikely to
occur physically, since there would almost always be interaction between
the two paths at input and output terminals, if nowhere else, but the theo-
rem states in effect that any circuit can be thought of in these terms even
when the physical separation into two indepehdent paths cannot be
achieved.

The theorem just established can also be stated in an analytic form which
is somewhat more convenient for purposes of calculation. It is obvious
that if the output voltage of the system varies by a given amount, the per-
centage change which the given variation represents will be inversely pro-
portional to the output we are considering. Thus, the percentage changes
in ¢ and ¢ — &%, corresponding to a given variation in the element #, will
be in the same ratio as the quantities ¢ — ¢% and ¢?. Since sensitivity is
an inverse measure of percentage change, from (4-8), the result expressed
by the theorem can therefore be transformaed immediately to the relation

F 0 — &

i el el (4-22)
where § is, as before, the sensitivity for the complete output ¢’. This
result can also be established by direct calculation from equations (4-2),
(4-10), (4-11), and (4-14). It holds for any circuit and for either uni-
lateral or bilateral elements.

Equation (4-22) is of particular interest as a means of estimating quickly
whether the return difference is a reliable measure of sensitivity or whether
a more elaborate calculation should be made. Since we are ordinarily
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interested in the sensitivity only to within several db, we can say, in general,
that the return difference will be a consérvative measure of sensitivity as
long as the absolute value of ¢% is not greater than that of . It will,
however, be a very pessimistic estimate if the two quantities happen to be
nearly equal in phase angle as well as magnitude. On the other hand, the
sensitivity is much poorer than the return difference in circuits for which the
absolute value of ¢® is much greater than that of é’.

The use of equation (4-22) will be illustrated in more detail by a con-
sideration of three different situations. As a first example, let it be sup-
posed that 7 is the transconductance of one of the tubes in a normal feed-
back amplifier. We may suppose for concreteness that the normal gain &
is 40 db. The transmission ¢% which is obtained when #” vanishes will
depend somewhat upon the type of circuit which has been chosen. If
either the input or the output is a balanced bridge, so that the g circuit and
the line are conjugate, for example, this quantity is zero. In other circam-
stances it will not be precisely zero but we can estimate its value as —40 db
from the general rule that the external gain is equal to the § circuit loss.
Thus, the ratio ¢%/¢ is of the order of magnitude of —80 db and the dis-
tinction between return difference and sensitivity is entirely negligible.

As a second example, let it be supposed that #is in the g circuit. It may
be taken to represent a shunt impedance, a series admittance, or the trans-
conductance of the final tube in the circuit shown later by Fig. 4.9. Inany
of these cases setting #7 = 0 opens the feedback so that ¢% is much greater
than ¢. Variations in # are thus much more important in affecting the
final transmission characteristic than a calculation of the return voltage
would indicate. This is, of course, to be expected for elements in the
B circuit.

The third situation is represented by the circuit shown previously by
Fig. 4.5. If this structure is taken as a complete feedback amplifier, the
situation is essentially the same as that first described. The only difference
results from the fact that, since the circuit contains only a single tube, 6o
and 6 would probably be numerically smaller than was assumed there. We
might suppose, for example, that the ratio é%/¢® is —30 db. This would
still give a negligible distinction between return difference and sensitivity
for most applications. An entirely different situation, on the other hand,
may be obtained if the circuit is the last stage of a double loop amplifier.
In these circumstances o and @ refer to the transmission characteristics of
the complete amplifier and in virtue of the feedback around the principal
loop this may not be much affected even by a considerable change in the
transmission of the last tube. For example, if the normal feedback around
the principal loop is 40 db, the assumed decrease of 30 db in the gain of the
circuit of Fig. 4.5 when 77 vanishes will still leave a net feedback of 10 db
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around the principal loop. The difference between ¢% and ¢ is thus only
that due to the change in the g effect in the principal loop caused by the
reduction from 40 to 10 db. It is clear therefore that F will be much
smaller than § in (4-20), so that the actual stabilization of the circuit
against variations in the last tube is much greater than would be indicated
by a computation of the return voltage on that tube.*

4.12. Reference Value for W

The method of computing sensitivity which we have thus far considered
consists essentially in separating out the directly transmitted component
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of the total output current, so that in effect it becomes the origin from
which the net output current is computed. This is illustrated for an
ordinary single loop amplifier by Fig. 4.7. The actual bilateral 8 circuit in
the amplifier is represented symbolically as the sum of the two unilateral

* A physical interpretation of this apparently surprising result can be obtained by
noticing that in the multiple loop structure voltage can be returned from the plate of
the last tube to its grid by two different paths. The first passes through the principal
B circuit and the first stages of the forward circuit, while the second passes directly
through the local feedback elements. These two paths together can be regarded as
forming a feedback amplifier, the p circuit of which is the first path, while the 8 circuit
is represented by the second. Under the conditions which have been assumed, there is
a net gain around the complete feedback loop of this amplifier and the insertion of the
feedback path must therefore diminish its gain. The insertion of the local feedback
elements in the final structure, in other words, reduces the return voltage on the last
tube.

Speaking approximately, the difference between F and S is an indication that this
effect should be neglected. The return voltage which most nearly represents the
effective stabilization of the circuit against variations in # is that which would be
obtained if the local feedback network were omitted. To a first approximation, the
insertion of the local feedback circuit does not affect the feedback on the last tube, but
it does of course affect the feedback on the remaining tubes by changing the trans-
mission characteristic around the principal loop. This is discussed in more detall m a
later chapter. -
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components By and Bs. If we suppose that the variable element % is here
identified with the whole u circuit, the component 8, will provide the
directly transmitted term. The use of this term as a reference is equivalent
to saying that the contribution of 8; to the final output is to be considered
separately from the contribution of the ideal feedback amplifier represented
by the combination of  and B, enclosed by the broken lines.

As an alternative to this procedure, we may also take account of the
direct transmission term by changing the origin from which the variable
element # is measured. In the circuit of Fig. 4.7, for example, we might

—— —
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begin by lumping u and B together, as shown by Fig. 4.8. The structure
thus becomes an ideal single loop amplifier, without direct transmission, in
which the effective forward gain is 4’ = u + B2. This is equivalent to
computing u from the origin —pf; rather than from zero. The use of an
offset reference point for the variable element in this manner is merely an
unnecessary complication in most elementary situations, where the methods
we have already developed are adequate to deal with the problem. It is
worth some attention, however, since in certain circuits it leads eventually
to a simplified analysis. This will appear more clearly in Chapter VI.

For the general case the new origin for /7 will be called the reference value
of . It will be symbolized by #7 and is specified by the

Definition: The reference value of any element is that value which
gives zero transmission through the circuit as a whole when
all other elements of the circuit have their normal values.

It was indicated earlier in the chapter that return difference computations
could in general be based upon any arbitrary reference value for . From
this point of view, #; is only a special case which is called #%e reference in
recognition of the unique output current to which it leads. The reference
condition is evidently somewhat like a bridge balance and expressing # in
terms of its departure from # is similar to expressing the impedance of one
arm of a bridge in terms of its departure from the impedance which would
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give an exact balance, rather than in terms of its actual value. It will be
recalled that this is the device which was used to simplify the analysis of the
circuit in Fig. 4.4.

It is apparent from such an expression as (4-10) that % is given, for
unilateral and bilateral elements respectively, by

AY
W= ——=> (4-23)
Ar243
and
A
Wo=——2. (4-24)
Ajo3a

If we let #” represent the departure, 7 — #,, from the reference value,
such an equation as (4-10) therefore becomes

& = W. (4-25)

This expression has the same form as a function of 7 as the original
equation (4-10) had as a function of # when we assumed Ads = 0. Thus
we can apply to it the procedures we used previously to establish equation
(4-15) for the sensitivity in the case of zero direct transmission. Since a
given percentage change in 7 will not be equal to the same percentage
change in /7, unless # and #’ happen to be equal, however, the * sensitiv-
ity ” computed from (4-25) will not in general be equal to the sensitivity
defined in (4-7) or (4-8). To prevent confusion, therefore, the result of
the present computation will be called the relative sensitivity, symbolized
by §’. With this understanding, we can evidently write

1 Ayz A

S'=T=1+W’?=Xr’ (4-26)
3 log W'
where the symbol A’ is given by
AO
A=A AlZa Ayz, 4-27)

and evidently represents the value assumed by A when 7 "=0. If (4-27)
is simplified by means of (4-13), the expression for §’ can also be written as
Ag381243 _  Aligys

' 1 _
§=1-7 Ay3h49 Ag13l40 (4-28)




MATHEMATICAL DEFINITION OF FEEDBACK 63

It is evident that there is a complete formal parallelism between this
analysis and that of an ordinary circuit with zero direct transmission. For
example, (4-26) is exactly like (4—15) except for the substitution of #”
for # and A’ for A°. These, however, are exactly the modifications which
are made in converting a return difference for zero reference into a return
difference for the reference #,. We therefore have the

Theorem: The relative sensitivity for any element 7 is equal to the
return difference of # for the reference #.

There remain the problems of determining §’ from more immediately
measurable quantities and of relating §’ to the actual sensitivity §. Of a
variety of equations which can be used to determine §’, perhaps the
simplest is
_Fo)
~FWe)

s’ (4-29)
where F(W) is, as usual, the return difference for #” when # has its normal
value, and F(#) is the return difference for 7, calculated for # = W,
This result follows 1mmed1ate1y from (4-5). Another simple formula,
useful in special circumstances, is

6’9“’

s = - (4-30)

e® — ¢

where e®» stands for (Ajz43/As3)# R and is, from (4-10), the transmission
through the system when the variable element # is infinite. If # repre-
sents a tube, this condition is, of course, an unrealizable one. It is also
possible to determine §’ from measurements made when # = 0, by modify-
ing the circuit in certain special ways. The development of these methods,
however, is postponed until Chapter VI.

The most straightforward relation between §” and § is probably

'
S = -};/7 § = (1 Z/VO) S, (4-31)

This equation can be established immediately if we recall that the distinc-
tion between § and §” is due only to the fact that a given actual change in
the physical network will produce different percentage changes in % and
W’ when these two quantities are unequal. Other useful formulae for the
relation between § and §’ are

F /
=7 & -, (4-32)
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and
’ e 4
S§=84+———-. 33

+ & — e (433)
They are both readily established from the preceding general equations for
F, §,and §’ and the identity (4-13). The various situations which may
arise in these equations for different relations between ¢% and ¢® can be
illustrated again by the examples used in the discussion of equation (4-22).

4.13. Reference Value of W as an Index of Location in the uB Loop

If we exclude the special problems presented by multiple loop amplifiers,
the introduction of the reference value #, into computations of sensitivity
is, in a broad sense, the analytical counterpart of the physical fact that the
properties of feedback circuits vary with the location of the element in the
loop. It corresponds in other words to the fact that the stabilizing and dis-
tortion reducing properties of feedback hold only for elements in the
circuit. Since we cannot, at best, decide what part of the complete loop is

Ty
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# and what part is 8 until we have chosen the input and output terminals,
these properties thus depend not so much upon the fact that a feedback
loop exists as they do upon the location of the element in question with
respect to the transmission path which is eventually of interest. The refer-
ence value /), since it depends upon the particular choice of input and out-
put terminals, takes this factor into account.

As the preceding examples have shown, the reference value for an
element in the  circuit is ordinarily quite small so that with a large return
voltage the effective sensitivity is also large. When the element is in the
B circuit, on the other hand, the value of % which will produce zero trans-
mission in the complete system is in general large and variations in #
when computed against this extreme reference correspond to relatively
little stabilization of the final amplifier transmission characteristics.

The way in which the reference value appears as an index of location can
be illustrated concretely by the circuit of Fig. 4.9. The structure is a
normal single loop feedback amplifier with the output impedance taken
as Ry, with the exception that the second interstage includes a transformer-
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resistance combination instead of some more conventional configuration.
Letting /# represent the transconductance of the output tube and assum-
ing that the reference value for /7 is negligibly small, we readily find that
0

dEp _A w1 W (4-34)

Egr AW 14+7T W
where T = W (A43/A%) and can be identified with the negative of the trans-
mission characteristic around the complete loop. This expresses the
familiar result that feedback reduces the effect of variations in the tube
gain by the factor 1 — ug.

Let it be supposed now that the output impedance is taken as Ry, but
that Rj is retained as an ordinary circuit element. The feedback loop,
regarded as a complete loop, is exactly the same as it was before. The
change in the choice of output impedance has, however, transferred the last
tube to the B circuit so that we may expect that the stabilizing properties
of feedback have disappeared for variations in the gain of this tube. The
situation can be analyzed by using the formula for relative sensitivity given
by equation (4-26). If we set A" = A — W’ Ay3, this formula can be
written as

dEg _ &= Wb W
Ep ~ A w’

We now determine the 5 which will lead to zero transmission through
the complete amplifier. In the present instance #y must obviously be
infinite since zero transmission can be obtained only with an infinite 8
circuit gain. If % is infinite, however, 7/ must also be infinite and
(4-35) therefore reduces to

(4-35)

aw. (4-36)

Upon multiplying and dividing the right-hand side of (4-36) by # and A°
and comparing with (4-34), this becomes

O Way dW T d
dEgp _ N Wby dW _ —T dW (4-37)

where T still represents —up for normal operation. We can readily verify
that this is the correct formula by direct differentiation of the ordinary
equation for the gain of a feedback amplifier as a function of 8.



CHAPTER V

GeNErAL THEOREMs ForR FEEDBACK CIrcurTs — A

5.1. Introduction

Tuis chapter and the one which follows will continue the general dis-
cussion of feedback circuits begun in the preceding chapter in terms of the
definitions of return difference and sensitivity which were established there.
They have for their principal object the development of general theorems
on the relation between these quantities and impedance, gain, non-linear
distortion, etc. The theorems of the present chapter are developed from
simple mathematical identities which remain valid whatever the reference
values for the elements may be. They are thus stated in terms of the
return difference for a general reference, including the relative sensitivity
and the return difference for zero reference as special cases.

5.2. Impedance of an Active Circuit*

The first general theorem relates to the effect which feedback may have
upon the impedance measured between any two points of the circuit. In
addition to its general interest the theorem is of particular application with
respect to the calculation of the return difference for bilateral elements, since
it was shown in the preceding chapter that that depended upon the imped-
ance of the circuit to which the element was connected. In developing the
theorem it is supposed that the impedance which would be obtained in the
absence of active elements is first determined by ordinary circuit methods.
The theorem then is concerned with the modification produced in this
impedance by the addition of the active elements. This is, of course, the
heart of the problem.

The fact that the active elements must in general produce some effect is
easily seen if we consider, for example, the input impedance of an ordinary
feedback amplifier. By definition this impedance must be the ratio of the
input voltage to the current which flows through the line into the amplifier.
The net current which flows past the input terminals, however, is a com-
posite of the current which would flow if we considered only the passive
elements and of the current which is returned to the source through the
feedback circuit. The presence of this feedback current may obviously

*The material of this section is a modified version of results originally due to
R. B. Blackman (B.S.T.]., October, 1943).
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make the impedance of the amplifier quite different from the impedance
which we would measure if the tubes were not operating.

Although the impedance of an active circuit may be quite different from
that of the passive structure the relation between the two is easily built up.
Let it be supposed, for example, that we are interested in the active imped-
ance Z which would be measured from the terminals of a resistanceless
generator inserted in the #th mesh of the circuit. This is obviously

= A (5-1)

Apn
Now suppose that we choose any element, #, within the network. It is
convenient to assume that # represents some mutual impedance Z,;,
although the final results are the same whether 7 is a unilateral or a
bilateral element. We can rewrite (5-1) as

(5-2)

where, as in the preceding chapter, A® and A), represent A and A,, when
w=0.

In equation (5-2), A°/A2, is evidently the impedance which would be
measured if #7 = 0. Assuming that # or Z;; is the mutual impedance of
one of the vacuum tubes, then, we can call this the passive impedance Z,,
ot the impedance which would be measured if this tube were dead. More-
over, A/A® is the return difference for # with the circuit in its normal
condition, that is, with the terminals between which Z is measured shorted
together. In addition, A,, and A%, are the coefficients of Z,, in A and
A° respectively. The ratio An./Al, is therefore the limit approached by
A/A® as Z,, becomes indefinitely great. It consequently follows that
Aun/ by, represents the return difference for #7 when the self-impedance
of the #th mesh is made infinite, or in other words when the terminals
between which Z is measured are left open. We can therefore write
equation (5-2) as
F(0)

Z=Z0F(oo)’ (5—3)

where F(0) and F (o) are the return differences for 7 when the terminals
between which Z is measured are respectively short-circuited and open-
circuited.
If we base the analysis on admittances instead of impedances the result is
the same and we can write
F@
Y=Y, i ((w)) ’ (5-4)
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where F(0) and F( ) now represent the return differences with respect to
W when zero and infinite admittance, respectively, are added across the
terminals between which Y is determined.

Equations (5-3) and (5—4) describe the impedance or admittance at any
part of a feedback circuit in terms of the impedance or admittance which
would be obtained with any arbitrary element vanishing, and the return
difference for that element. If the arbitrary element # is the mutual
impedance or transconductance of a vacuum tube, therefore, we can dis-
count the effect of this active element in the circuit. In ordinary feedback
amplifiers zero gain in any one tube will interrupt the feedback circuit so
that the actual impedance or admittance can be computed directly from
(5-3) or (5-4) by choosing any one of the tubes as #. In more complicated
cases a single dead tube may not reduce the calculation of impedances to
the completely passive case. Evidently, however, by starting with all the
tubes as dead and applying (5-3) and (5—4) repeatedly as each tube in
turn is assigned its normal gain we can cover all circuits.

The analysis used in developing (5-3) and (5—4) has been based upon the
assumption that the reference for # is zero. Since (5-2) is merely an
identical form of (5-1), however, the zero value for # is a matter of indif-
ference and we can choose any reference we like as long as we choose the
same reference for both F’s. The general result can therefore be stated in
the following words.

Theorem: The ratio of the impedances seen at any point of a network
when a given element # is assigned two different values is
equal to the ratio of the return differences for #” when the
terminals between which the impedance is measured are
first short-circuited and then open-circuited, if the return
differences are computed by letting the first value of 7 be
the operating value and the second the reference.

The relation between feedback and impedance can also be stated in
another way. Let it be supposed that an arbitrary impedance Z, is added
in series with the #th mesh, and let A" and A% represent A and A, respec-
tively, after the introduction of Z,. The return difference for any # after
Z, is added can be written as

’
A At Zaban (5-5)

F =
AY T AY 4+ Z,A0

Now let Z, be so chosen that # = 0. Upon comparing the result with
(5-1) we readily establish the
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Theorem: The impedance seen in any mesh is the negative of the
impedance whose insertion in that mesh would give zero -
return difference for an arbitrarily chosen element in the
circuit.

This is an obvious theorem in the light of the discussion of stability given
in a later chapter since it will appear that either a zero return difference or
zero impedance at any frequency corresponds to the possibility of a natural
oscillation in the circuit at that frequency.

0
44

Fic. 5.1

5.3. Examples of Active Impedances

To exemplify these relations we will consider the series feedback amplifier
shown by Fig. 5.1. Let the Z of equation (5-3) be the impedance which
would be measured in series with any one of the series connected branches
such as Z,, Zg or either of the high side transformer windings. In other
words it is the impedance which would be measured between any such pairs
of terminals as 44’, CC’, or DD’ in Fig. 5.1.

It will also be assumed that the /7 of equations (5-1) and (5-2) is the
transconductance of any one of the tubes. With terminals 44’, CC’, or
DD’ shorted together the return difference with respect to # is
F(0) =1 — pB, where ug is the transmission around the loop computed in
the normal fashion. With the terminals opened, on the other hand, the
return difference with respect to #7 is unity. Equation (5-3) consequently
gives

Z=Zo(1 — uB), (5-6)

where Zg is the impedance which would be measured with one of the tubes
dead and is evidently the ordinary passive impedance. The impedance
measured in any series line is thus much larger than the passive impedance.
For the impedance between 4 and A4’ for example we find

Z=(1—pB)(Zy + Zy + Z3), (5-7)
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upon the assumption that the input and output impedances of the tubes are
very large in comparison with the impedances in the 8 circuit.

Next consider the apparent impedance which would be measured between
any such points as 4 or C and ground. We now find that the normal
return ratio will be obtained when the impedance connected between A4 or
C and ground is infinite and that the return ratio vanishes when the termi-
nals are shortcircuited. In other words F(0) = 1 and F() = 1 — uB.
Equation (5-3) thus gives

— Z()
1 —ug
The impedance measured across the path of the feedback loop is therefore

reduced by feedback. For the impedance between A4 and ground, for
example, we have

(5-8)

_ 1 2y(Zy + Zs)
1—uwZi+ 2,4+ Zy

As a more complicated example we may consider the impedance meas-
ured across the terminals E, E’ in Fig. 5.1. Here we have
Z7(Zg + Z10)

Zo = 2, —_—, 5-10
v =Lt 7+ 2 (5-10)

(-9

while
FO) =1-— 8,

- 1 M]
Fle) =1 MﬁZ7+Zs[Z8+Z7+Z9+Zlo ’

the factor multiplying u8 in the second equation being ottained by calculat-
ing the change produced in the transmission characteristic of the interstage
when E, E' is open- -circuited. The substitution of these values in equa-
tion (5—3) then gives the impedance sought for. If in particular we assume-
that uB is very great the result becomes

Z=Z; + Zs. (5-12)

This result, of course, might have been foreseen from (5-6). If we con-
sider that Z; and Zg together represent a series impedance it follows from
this equation that the impedance of the circuit to which they are connected
must be very high if the feedback is large. Only Z; and Zg therefore need
be considered in determining the impedance at terminals E, E’.

These calculations have been based upon the first of the two theorems
given in the preceding section. The same results follow from the second

(5-11)
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theorem. As an example, we may return to the discussion of the effect of
feedback on a series impedance, as expressed by (5-6). Let the imped-
ance whose insertion in the series arm would reduce the return difference to
zero be represented by Z’.  Its insertion in series with Zy will produce the
loss Zo/(Z' + Zy) in the transmission around the loop. For the return
difference to vanish, however, the loop transmission, u8, must be reduced to
unity. We therefore have

Zy 1
0, 5-13
Z +Zy 8 (5-13)
or
Z = (uB — 1)Z,, (5-14)

which is the negative of the active impedance given by (5-6).

5.4. Feedback for Bilateral Elements

A knowledge of the active impedances of the circuit makes it a simple
matter to compute the return differences and sensitivities of its bilateral
elements in accordance with the methods of the preceding chapter. As an
example we may choose the impedance Zg of Fig. 5.1. By the previous
analysis, the return ratio for this element is equal to the ratio of its imped-
ance or admittance to the impedance or admittance of the circuit which
it faces, the return difference is equal to the return ratio increased by unity,
and the sensitivity is equal to the return difference suitably modified to
take account of direct transmission. If we exclude the slight trickle of
current directly through the 8 circuit, zero output current is obtained when
the branch Zg is an open circuit. It is obviously convenient, therefore, to
use an admittance analysis, in which case the direct transmission term is
zero and the sensitivity can be taken equal to the return difference.

It follows from (5-3) that the impedance seen at terminals C, C’ of
Fig. 5.1is (1 — uB)(Z4 + Zs + Zg) and the admittance which Zg faces is
therefore the reciprocal of (1 — uB)(Z4 + Zs + Zg) — Zg. Upon divid-
ing the admittance of Zg by this admittance the return ratio and the return
difference or sensitivity for the element Zg are obtained in the form

T=Yel(1 — uB)(Zs+ Zs + Zs) — Zs),
and

Z4+Z5+Zﬁ.

F=§=(—u="

(5-15)

The factor (1 — u8) in this expression is self-explanatory. - The remain-
ing factor (Zy + Z5 + Zg)/Zg reflects the fact that the u circuit gain does
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not vary in strict proportion to Zg because of the presence of the other
impedances. If Zg were very small, for example, its impedance might vary
considerably in per cent without greatly affecting p and a corresponding
term in the sensitivity expression must therefore be included in virtue of the
fundamental definition given by equation (4-8) of the preceding chapter.

If we consider a shunt impedance such as Z, the procedure is essentially
the same. In this case, the reference condition is a short circuit and it is
convenient to use impedances rather than admittances in the analysis.
Since the impedance which Z; faces, however, is now reduced by feed-
back the ratio between Z, and the impedance of the rest of the circuit is
correspondingly increased. The essential result is of the same general type
as equation (5-15).

As a third example we may consider the impedance Z; in the 8 circuit of
Fig. 5.1. So far as the calculation of return ratio and return difference is
concerned, the situation with respect to this element is exactly the same
as it was for Zg, and we can make use of (5-15) again, with appropriate
substitution of Z;, Z,, and Zs for Z,, Z;5, and Zg. The presence of a large
direct transmission term, however, complicates the computation of sensitiv-
ity. It is simplest to begin by determining the relative sensitivity S’.
We can evidently secure zero transmission from the amplifier as a whole by
assigning the B circuit a large gain equal to that of the u circuit and a phase
which will cancel the u circuit output. The reference value for Z, must
therefore be very nearly —(Z; + Z3) or, in other words, very nearly the
negative of the passive impedance which it faces. The effective impedance,
W', can therefore be taken as Z; + Z, + Z3. The impedance which #”
faces must be the difference, u8(Z; + Zs + Zs), between #” itself and the
total impedance calculated in equation (5-7). The relative and absolute
sensitivity are readily found from these facts, plus the relation
§'/S =W /W, to be

§ = L=,
uB

and

1—M521+Zz+za,

5-16
LB Zy ( )

S =

and are obviously small in normal situations. The result is easily checked
by direct differentiation of the gain equation for the amplifier in accordance
with the fundamental definition of Chapter IV. It is interesting to notice
that the difference between the very large sensitivity represented by
equation (5-15) and the low value obtained in equation (5-16) is the result
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entirely of the difference in the two reference conditions. The situations
otherwise are exactly the same.

5.5. Effect of Feedback on Input and Output Impedances of Amplifiers

The distinction between the active and passive impedances of a feedback
circuit is particularly important in coasidering the effect of feedback on the
impedance which an amplifier presents to the line. The principal results,
for the basic connections described in Chapter 111, can be listed as follows.

1. The active impedance of a series feedback amplifier is (1 — u8) times
its passive impedance. Since the input and output impedances of
tubes are normally high anyway, the active impedance is, in general,
almost infinite. A similar statement can be made for a cathode feed-
back circuit.

2. The active impedance of a shunt feedback amplifier is 1/(1 — uB)
times its passive impedance. It is thus relatively low.

3. The active impedance of a balanced bridge amplifier is the same as its
passive impedance. This connection is therefore intermediate be-
tween the series and shunt connections.

4. If the balance of the bridge in the circuit of the preceding paragraph is
disturbed by a change in the final tube impedance, the reflection
coefficient between the active impedance so obtained and the active
impedance before the change is 1/(1 — pB8) times the reflection
coeflicient which would be obtained if the circuit were passive, where
uB represents the loop transmission after the change is made.

The first three of these statements can be dismissed briefly. The line
impedance in a series or shunt feedback amplifier is merely a special case of
a general series or shunt impedance, the results for which have already been
given by equations (5-6) and (5-8). In the balanced bridge circuit, the
bridge balance produces conjugacy between the line and the 8 circuit. It
follows from this that the loop transmission is independent of the line
impedance.* We therefore have F(0) = F(«) in (5-3), so that feedback
does not affect the impedance.

The fourth statement may require amplification. In the theoretical
balanced bridge connection the tube impedance is one of the arms through
which the balance is obtained. Since tube impedances are ordinarily quite
variable, the balance which can be relied upon in practice is imperfect.
Moreover, it may be necessary to shunt the tube with a dissipative branch

* This follows readily from the principle of reciprocity. See, for example, the dis-
cussion in the next chapter under the heading “ Reference Feedback as a Balanced
Bridge.”
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in order to secure an impedance whose phase angle and magnitude are
appropriate to produce a balance with permissible impedances in the other
arms of the bridge. This is particularly unfortunate in an output bridge
because of the wastage of output level to which it leads. The final state-
ment says in effect that if the feedback is large the departures produced in
the impedance which the amplifier presents to the line will be extremely
small even when no effort is
made to control the impedance

z, of the tube. Naturally, how-
— Z4 ever, the other property of a
Z, bridge circuit, that the loop

transmission is independent of

I ’ the line impedance, will no
J longer hold.

To /3 Circuit This effect of feedback is
Fio. 5.2 easily demonstrated by using

(5-3) in two different ways.
Let Z, in Fig. 5.2 represent the impedance whose removal produces
the disturbance under consideration. It will be supposed that with
Z, present the bridge is perfectly balanced. Let Z; represent the line
impedance. Let Zy, and Zp, represent respectively the passive impedances
of the circuit to the right of Z, when Z; has its normal value and when
Zg s replaced by a short circuit. Finally, let Z¢; and Z,, represent respec-
tively the active impedances looking into the amplifier when Z, is present
and when Z, is removed by opening the terminals Py, Ps.

The first step is the computation of the active impedance Z; looking into
the terminals P;, P, when the neighboring impedance is taken as Z,.
Let this be the Z of (5-3) and let the F’s of this equation refer to the last
tube. Let the loop transmission with Z, absent be represented by ug
so that F(0) = 1 — pB. From ordinary circuit considerations, the intro-
duction of Z, changes the loop transmission to [Z,/(Z, + Z)]uB. More-
over, the passive impedance Zy is Z, + Zp;. We therefore have

Za

Ve o—F——ub
Zo+ Z
2, = (2o + Zn) l_t #;1 . (5-17)

Now consider the impedance Z; corresponding to Zze. The passive
impedance becomes Z, + Zyz. F(0) is the same as it was in developing
(5~17), since with Z, present the bridge is balanced and a change in the line
impedance does not affect the feedback loop. The ratio between the loop
transmissions with Z; present and Z, absent is Z;/(Z, + Zy3). We there-
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fore have
1 ____Z_"___
Z.+ Z
Zy = (Za + Za) r . (5-18)
1— Zo + Zyo 8
Zot Zn "

In this computation the F’s of (5-3) have referred to the last tube. We
now apply (5-3) again with the F’s taken with respect to Zz. It follows
from (5-3) that the ratio of the return differences for Z; with Z, present
and absent must be the same as the ratio of Z; to Z;. We can therefore
write

ch + Zd
ch _ Zl
Zo+ Za  Za (5-19)
Zc2
or
Zd(Zc2 - ch) — é -1
ch (Zc2 + Zd) Z2
1 Zy — Z
b1 b2 . (5_20)

=1—ﬂ6 Zo + Zpo

If we set Zg = Z, the left-hand side of (5-20) is the reflection coefficient
between the active impedances of the network before and after the removal
of Z,. On the right-hand side all the quantities except the factor 1 — uB
represent the network in its passive state. The original statement is
therefore proved.

5.6. Use of Impedance Measurements to Determine Feedback

The theorems in the first section were developed as a means of computing
the active impedance of a circuit when the return differences are known. In
practice, however, they are perhaps more frequently applied as a means of
determining the return difference from impedance measurements. This is
often a more convenient method of obtaining the return difference than a
direct transmission measurement would be, since it does not require open-
ing the feedback loop. The method can be applied even to unstable struc-
tures by including in the measurement a known impedance of a magnitude
which will stabilize the circuit.

5.7. Relation between Feedback for Two Elements

The process used to develop the formula for active impedances can also
be applied to obtain a theorem relating the return differences for two ele-
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ments in the circuit under actual operating conditions to the return differ-
ences which would be found for each element if the other vanished. Let the
two elements be represented by #; and #,. To express the fact that the
determinant of the system will depend upon both #; and 7, we may write
it, in general, as A(#1,/#5). Then A(0 ;) represents the determinant
when 7, is zero, A(#1,0) the determinant when #; is zero, and A(0,0)
the determinant when both #7; and %, are zero.

The return difference for either element can be expressed as the ratio
of the complete determinant to the determinant obtained when that ele-
ment vanishes. Letting F; and F, be the return differences for #; and
W 3, respectively, these relations, in our present notation, are

F = AWV W a) ,
17 A0 )
(5-21)
Fy = A(Wth),
27 AW1,0)
or
Fy _ A(W,0) _ A(#1,0) A(0,0)
Fy ~ A(07;)  A(0,0) A0 W)
(5-22)
_Ew,=0)
Fz(Wl = 0)

Equation (5-22) is evidently unaffected if the s are assigned any
reference values, as long as the reference values are taken as the same on
both sides of the equation. We can therefore state the

Theorem: The ratio between the actual return differences for any two
elements, for any reference conditions, is the same as the
ratio which would be obtained if the return difference for
each element were computed with the other element at its
reference value.

As an example, we may take #; as Yy in Fig. 5.1 and %, as
the transconductance of one of the tubes. We see by inspection that
Fz(Wl = 0) =1 and Fl(Wg = O) = (Z4 + Z5 + Zﬁ)/Zﬁ The theorem
states that the ratio between these two s will be preserved for any values
of the #”s. This is, of course, verified by equation (5-15).

5.8. Thévenin's Theorem in Active Circuits

The general formula for return difference also can be used to develop
another type of identity which is even simpler than those described previ-
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ously. Let it be supposed, for example, that /# represents the transimmit-
tance of the tube whose grid and plate are labeled respectively 7 and j.
W must be a constituent of Z;; or Y;; in the general determinant. The
return difference for 7 can be written, from (4-2), Chapter IV, as

, (5-23)

where A° represents A when 7 = 0 and £ is any other node or mesh in the
circuit.

In equation (5-23) the determinant Ag; can equally well be written as
AY; since it contains no terms from the 7th column of the original determi-
nant and is therefore independent of /7. 'The ratios Ag;/A and A/ A° are
thus the transmissions* from 4 to i when # has its normal value and when
W vanishes. Moreover, the identity evidently holds equally well if we
use any arbitrary value instead of zero as a reference for 7. 'We can there-
fore draw the following conclusion:

Theorem: The ratio between the transmissions from any point of the
network to the grid of a given tube for an arbitrarily chosen
reference condition and for the normal operating condition
is equal to the return difference of the tube for the chosen
reference.

A simple example is furnished by the transmission from the input line to
the p circuit of an ordinary amplifier. The effective signal level on the grid
of any tube is 1/(1 — pB) times the level which would exist if that tube
were dead.

We can also write the return difference equation as

F=-—=— "2 (5-24)

The quantities Aj/A and Aj,/A° evidently represent transmissions from
the plate to £ under normal and reference conditions. We therefore have

the

Theorem: The ratio between the transmissions from the plate of a
given tube to any point of the network for an arbitrarily
chosen reference condition and for the normal operating
condition is equal to the return difference of the tube for
the chosen reference.

This is best exemplified by the discussion of the following sections.

* “ Transmission ~’ is used here as an abbreviation for transfer admittance in a mesh
analysis or transfer impedance in a nodal analysis.
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If 7 is a bilateral element the situation is essentially the same except
that no distinction need be made between the ““ grid ” and “ plate ”” ends
of 7. We therefore have the

Theorem: The ratio between the transmissions from a given bilateral
element to any point in the network, or vice versa, for an
arbitrarily chosen reference condition and for the normal
operating condition is equal to the return difference of the
given element for the chosen reference.

The last theorem gives a clue to the characterization of the three theo-
rems as a whole. If /7 is a bilateral element the return difference for #
corresponding to any given reference is the ratio of the total immittances
seen from # when W has its normal and reference values. But the state-
ment that this is the same as the ratio of the transmissions from % to #
under the two conditions is merely another way of expressing Thévenin’s
theorem.* On this account the group of three theorems on the relation
between return difference and transmission will be described as the general-
ized Thévenin’s theorem, applicable to unilateral as well as bilateral elements.
In other words the return difference for a unilateral element plays the same
role in determining the final response that the impedance relations at
generator or receiver terminals would play in an ordinary transmission
calculation.

5.9. Computation of Wy

As an example of these theorems we will consider the determination of
the reference W, for one of the tubes in the circuit. It will be recalled that
Wy is the value which % must assume in order to provide zero trans-
mission through the complete structure. An equation for # has already
been given by (4-23) of the previous chapter but the A’s which appear in it
are not easily recognized as quantities which could be determined by
physical measurement. With the help of the generalized Thévenin’s
theorem of the preceding section it is possible to develop an alternative
formula for #, involving quantities of more direct physical significance.

Let the input and output of the circuit as a whole and the grid and plate
of the tube 7 be labeled respectively 1, 2, 3, and 4. The quantities
vi = AY/A0, yy = Ar3/A% 3 = Age/A%, and v4 = Asz/A° represent
respectively the transmissions from input to output, from input to grid,
from plate to output, and from plate to grid, all evaluated on the assump-

* Thévenin’s theorem is discussed in most books on communication circuits. See,
e.g., Shea, ““ Transmission Networks and Wave Filters,” p. 55, or Terman, “ Radio

g 3 ol pd p J ’l
Engineer’s Handbook,” p. 198.
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tion that the tube is dead. It will be supposed that all these transmissions
are known.

If we begin with the tube dead, the excitation on the grid for a unit source
in the input will be vo. The fact that the tube has the residual gain #,
in the reference condition can therefore be represented by inserting an
equivalent generator —H#yve in the plate circuit.* If this generator were
actually an independent source of current or voltage it would evidently pro-
duce the response —#yyays in the output. The reference condition could
then be established by finding what value of /# would lead to exact cancel-
lation between this response and the direct transmission y;. But the
introduction of the equivalent generator coincides with a change in tube
gain from zero to #,. In accordance with the theorems of the preceding
section, this must reduce the transmission from plate to output by a factor
equal to the return difference of the tube when W = W, This last
quantity can be found from a knowledge of the transmission 4 from plate
to grid. The correct relation is thus easily seen to be

Woveys

1 + WO'Y4 = Y1y (5—25)

or

Wo=—"T_, (5-26)
Y2Vs — Y174
in which all the quantities can be measured directly. The fact that this is
actually the same as the original formula for 7 can be established by means
of equation (4-13) of the preceding chapter.

5.10. Reduction of Distortion by Feedback

One of the principal practical advantages of feedback is the fact that its
use reduces the flow of modulation currents in the load due to the non-
linear distortion of the elements in the u circuit. In order to investigate
this, let it be assumed that the non-linear distortion is represented by the
addition of a separate *‘ distortion generator > in the plate circuit of the
distorting tube, while the circuit itself remains linear. This supposes that
the level of the fundamental components of the signal has been established
in advance, so that the amount of non-linear distortion can be calculated,
and also that the distortion is a small part of the signal, so that second order
effects representing “ distortion of the distortion ”* can be ignored. The
distortion generator may also be used to represent a source of extraneous
noise rather than a source of modulation products.

* The negative sign is due to the phase reversal in the tube.
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An appropriate relation can be developed immediately from the generali-
zation of Thévenin’s theorem described previously. It is merely necessary
to choose the point k to represent the output circuit. The second of the
preceding three theorems can then be restated as the

Theorem: The noise or distortion current in the output produced by a
prescribed distortion generator in one of the elements of the
circuit is equal to the current which would be found with
the element in an arbitrarily chosen reference condition
divided by the return difference of the element for the chosen
reference.

But, if we deal only with the portion of the output current which flows
because the given element is activated, the return difference is also a measure
of the sensitivity of the circuit to variations in the linear properties of the
given element. It thusappears that the contributions of the given element
to the distortion and to the fundamental frequency currents in the output
are governed by the same laws. This is not surprising if it is recalled
that a slight change in the linear properties of a circuit can be represented
by the introduction of a small generator at the disturbed point.* The
circuit must naturally have the same properties whether the generator
represents distortion or a change in the linear characteristics of the circuit.

5.11. Exact Formula for External Gain with Feedback

The relation between feedback and external gain is customarily expressed
by the statement that the gain is reduced by the amount of feedback.
Equation (3—4) of Chapter III, for example, gives this result for the simple
analysis in terms of independent u and 8 circuits.

If we wish to make very precise gain calculations, this statement suffers
from two objections. The first is that the meaning of gain in the absence
of feedback is somewhat uncertain, on account of the interaction between
the impedances of the u and g circuits at the ends of the amplifier. It is not
perfectly clear whether we should simply remove the feedback circuit
entirely in making the calculation of gain before feedback, or whether we
should make some allowance for the energy absorption of the 8 circuit
elements at input and output, and if so, what that allowance should be.
The second difficulty is the fact that the relation between gain and feedback
was developed only for the conventional single loop amplifier. It is not
clear how the relation should be applied to other situations, and in particu-
lar to situations in which there is an appreciable direct transmission term.
As a final example of the methods established in Chapter IV, therefore, we

* See the “ Compensation Theorem,” in Shea, p. 56, or Terman, loc. cit., p. 198.
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will develop an exact expression for the external gain in the presence of
feedback.
It is convenient to begin with equation (4-21) of Chapter IV. If we
multiply and divide by A°, this equation can be written as
A° —WA1304

S O am A 7R (5=27)

The quantity A%/(A® + #7A43) in this expression will be recognized as the
reciprocal of the return difference F. If we replace the remaining terms by
¢°F, the expression as a whole becomes

1
& — e = FeeF’, (5-28)

while if we make use of (4-22), Chapter 1V, the equation can also be
written as

= % &F. (5-29)

The quantity ¢’F will be called the fractionated gain. It may be regarded
as an exact statement of what is meant by “ gain before feedback.” We
notice that it is essentially the product of three factors. Two of them,
A1/ A° and (Age/A%) W g, represent, respectively, the transmission from the
input to the grid and from the plate to the output with the tube dead.
They thus include the input and output impedances of the 8 circuit just as
it stands. The third is the gain 7 of the tubeitself. In a single loop struc-
ture the fractionated gain is then the gain which would be realized if it were
possible to open the g circuit without affecting its impedance at either end.
An example is furnished by the circuit of Fig. 4.5 in the preceding chapter.
If this structure is taken as a complete amplifier, the fractionated gain is
readily computed to be

Z2 Z4
B Z3(Zy + Zs) (Zi + Z5)Z5 2,

Z Z VA Z
1 2+Zs+Z4+Z5Z1+Z2+Z3+ 1t 2

eOF

(5-30)

where Z5 on the right-hand side is identified with g in the general expres-
sion (5-27) and the two preceding factors will be recognized as the input-
grid and plate-output transmissions, A3/ A% and Ao/ AY, for this particular
structure. '

Equations (5-28) and (5-29) offer alternative ways of treating the gain
reduction due to feedback in systems with appreciable direct transmission.
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In equation (5-28), the gain reduction is applied only to the surplus of the
total output over the direct transmission term. This is the most natural
relation if we continue to think of the system as made up of two non-
interacting paths in parallel, one of which is simply a fixed structure fur-
nishing the over-all direct transmission, while the other contains the vari-
able #7 and exhibits the essential phenomena of feedback. Equation
(5-29) shows, however, that it is also permissible to apply the gain
reduction due to feedback to the complete output provided we take * feed-
back ” to be F2/S.

Equation (5-27) can be regarded as a relation which is appropriate if we
wish to give special attention to the reference condition # = 0. The
quantities ¢% and A® evidently apply to this state. Just as with most of
the other equations in this chapter, however, an analogous expression can
be developed for any reference. The use of the reference #; is of particular
interest, since it leads to an alternative ““ gain before feedback » expression
based upon measurements made with an interrupted feedback path. This
is discussed in the next chapter.



CHAPTER VI

GeNERAL THEOREMSs FOR FrEEDBACK Circurrs — B

6.1. Introduction

Tais chapter will continue the development of general feedback theorems
begun in the preceding chapter. The center of attention in the present
chapter, however, is the relative sensitivity, §’, and its use in expediting
feedback and gain calculations. A large part of the discussion is concerned
with multiple loop circuits, where the conception of relative sensitivity is
most useful. The chapter can be omitted by readers interested only in
simple feedback circuits.

6.2. Reference Feedback as a Balanced Bridge

In ordinary circuit calculations we frequently encounter a condition of
bridge balance between two branches by means of which transmission
calculations can be considerably simplified
even when the transmission is not taken di- {C}—

D]

rectly between the two branches in question.
As an example we may consider the calcula-
tion of the current which would flow in
branch F of Fig. 6.1 as a consequence of a
generator in branch A4 under the assumption
that branches B and F are conjugate. Such
a problem might be encountered, for example, Fre. 6.1

in connection with the design of a constant R

equalizer structure. Since 4 and B are not conjugate and current must
flow in B as a result of the generator in 4, it might appear at first sight that
the conjugacy condition allows o simplification in computing transmission
from 4 to F. It follows from the principle of reciprocity,* however, that
the current flowing in F as a result of the generator in 4 must be equal to
the current which would flow in 4 when the generator is inserted in F.
When the generator is inserted in F, however, no current can flow in B and
we can consequently choose any value we like for this impedance without
affecting the result. Obviously convenient values of B are zero and
infinity, since with either one the circuit is reduced to a simple series-shunt

* See Shea or Terman, loc. cit., pp. 52 and 198, respectively, or Guillemin “ Com-
munication Networks,” Vol. I, p. 152.
83
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configuration which is readily computed. A third convenient value for B
is that one which balances the bridge composed of branches B, C, E, and F.
This allows us to omit D, if we assume that the generator is in A4, so that
we can again reduce the structure to a simple series-shunt network.

In a broad sense computations on a feedback circuit in its reference con-
dition present an analogous situation. Evidently, the reference, since it
demands zero output current for any input generator, is somewhat similar
to a bridge balance between input and output. Since the principle of
reciprocity breaks down in circuits containing unilateral elements, we can-
not use as simple a device as was suggested in connection with Fig. 6.1 in
exploiting this possibility. This complicates the analysis without essen-
tially affecting the results, however. We will find that in a number of sub-
sequent theorems computations in the reference condition can be made
with arbitrary choices of the impedances in the input and output circuits.
The choice of an impedance which will simplify the calculation then becomes
principally a matter of ingenuity.

6.3. Return Difference and Relative Sensitivity

The simplest illustrations of these possibilities are furnished by a set of
relations between the return difference, the sensitivity, and the trans-
mission from input to grid and output to plate terminals of the tube in
question. =As in Chapter IV, let 1, 2, 3, and 4 denote, respectively, the
input, output, grid and plate. Then from (4-2) and (4-26) of Chapter IV
we can write

A
F A" A Ay A
e = 6~1
ST AT AT A A, 6-1)
A’

where, as before, the superscripts © and ’ indicate that the determinants to
which they are attached are to be evaluated with # = 0 and #”7 = 0,
respectively. We observe that the determinant A3 in (6-1) is independent
of # and might equally well be written as A% or Aj;. Thus the factor
Ay3/A° in (6-1) is the transmission from input to grid with the tube dead,
while the factor A’/A;3 is the reciprocal of the transmission between the
same points when the tube is in its reference condition. If we begin by
multiplying and dividing F/ S’ by A4y, instead of Aja, we can also obtain an
analogous expression involving the transmissions from plate to output for
these two values of /7.

The principal difficulty with these expressions as they stand is the fact
that the input to grid or plate to output transmission in the reference state
cannot be calculated without allowing for the residual feedback which
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exists because the residual transimmittance # remains in the tube For
most circuits, however, the idea of bridge balance between input and out-
put in the reference condition allows the problem to be much simplified.
Since the balance cannot depend upon the input and output impedances,
we can study the input to grid transmission for an arbitrary value of the
impedance connected to the output terminals, or the plate to output trans-
mission for an arbitrary value of the input impedance. By choosing the
. proper values in each case it is generally* possible to interrupt the residual
feedback path.

These possibilities are reasonably obvious physically, but it will simplify
later analysis if we also verify them mathematically. To represent the
effect of a change in the output line upon the input to grid transmission in
the reference condition, then, we can rewrite (6-1) as

F A A+ WaAs

8T A Afz + Walizme ’ ©2)

where /5 is an arbitrary immittance added at the output terminals when
the tube is in the reference condition. But we can also write

A Afzge = Af3Ajs, (6-3)

from the general identity (4-13), Chapter IV, if we recall that Aj, = 0,
since there is zero transmission from input to output in the reference state.
It follows from (6-3) that (6-2) is independent of #5, so that we can
choose any value we like for this quantity without vitiating the original
relationship between §’ and F given by (6-1). In particular, then, we
may give #; a value which will interrupt the return path from plate to
grid, or in other words will make Ay3 = 0. With this choice the second
factor of (6-2) becomes independent of #, so that we are at liberty to
suppose that the tube is dead rather than that it is in its reference condition.
We can therefore state the following

Theorem: The ratio between the return difference and the relative
sensitivity for any tube is equal to the ratio between the
transmission from the input circuit to the grid of the tube
when the output impedance has its normal value and the
transmission between the same two points when the
output impedance is assigned the value which interrupts
the return path from the plate to the grid of the tube, if the
tube itself is dead in both cases.

* That is, in the absence of some such special situation as that represented by the
bridge-type feedback amplifiers described in Chapter III, in which the loop trans-
mission is independent of the input and output line impedances.
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If the transmission path is taken from plate to output the analysis is
precisely similar and we have the

Theorem: The ratio between the return difference and the relative
sensitivity for any tube is equal to the ratio between the
transmission from its plate to the output circuit when the
input circuit has its normal value and the transmission
between the same points when the input circuit is assigned
the value which interrupts the return path from the plate
to the grid of the tube, if the tube itself is dead in both cases.

Simple illustrations of these theorems are furnished by ordinary single
loop amplifiers. If we apply the first theorem to a series feedback amplifier,
for example, the interruption of the return path is accomplished by open-
circuiting the output line. This evidently produces a slight change in the
input impedance of the 8 circuit, which would otherwise be terminated by
the output line impedance in series with the output impedance of the u
circuit. Since the input line, the input of the g circuit, and the input
impedance of the 8 circuit are all in series at the input terminals, there is a
corresponding slight change in the transmission from the input line to the
ucircuit. Inashunt feedback structure the situation is similar except that
the interruption in the return path is produced by short-circuiting the out-
put terminals. In either instance, of course, the change in transmission is
small in any ordinary application.

A more specific example can be obtained by returning to the structure
shown by Fig. 4.5,in Chapter IV. If we use the first theorem, the interrup-
tion of the return path is accomplished by open-circuiting Zs. For either
the open-circuit or the normal value of Zs, however, the transmission from
a generator in series with Z; to the grid is inversely proportional to the
impedance seen from the generator terminals. We can therefore write by
inspection

F Zy+ 2+ Z3

—_— . 64

4 Z+Z+Z3(Z4+Z5) 64
! 2T Za+ Zy + Zs

6.4. External Gain with Feedback

It was suggested at the end of the last chapter that gain expressions
analogous to the ones given there could be developed by starting with any
reference for the variable element 7. If we begin, in particular, with the
reference #y, we are led to formulae involving considerations very similar
to those we have just discussed.

The appropriate gain equation for calculations based on the reference 7
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is easily written from analogy with (5-27) of the preceding chapter. Itis

1 —W' ApA
=g - W 6-5)
or |
&
& = 3'7’ (6-6)

if ¢ is written in place of the last group of factors in (6-5). The validity
of (6-5) can be verified by direct calculation from equations (4-25) and
(4-28) of Chapter IV, if we make use of the condition A’Ajge = —AlgAL,,
which follows from an argument similar to that used for (6-3) in the
present chapter. In view of the various relations among §, §/, and F
which were developed in the last section and in Chapter IV it is also possi-
ble to write (6~5) and (6-6) in a variety of other obvious ways.

If we confine our attention to equations (6-5) and (6-6) as they stand,
we are concerned principally with the quantity ¢%#  This is evidently a
fractionated gain expression very similar to the original fractionated gain
¢ which appeared in Chapter V, except that each of the three transmission
factors of which it is composed is calculated with respect to the condition
W = W, rather than with respect to the condition #7 = 0. As in the pre-
ceding section, the input and output transmission factors Ajz/A’ and
Agz/A” can be calculated with an arbitrary value for the line impedance
not directly involved in the transmission path. If we choose in particular
the values which interrupt the return path, the calculations can be made
with the tube dead. Thus the difference between these factors and those
appearing in £/7 is that at each end they include the g circuit impedance as
it would appear with the feedback loop interrupted at the other end, rather
than as it would appear for the circuit connections as they stand.

A simple example is furnished by the series feedback amplifier shown by
Fig. 4.5 of Chapter IV, which we used previously to illustrate the calcula-
tion of fractionated gain in the zero reference case. Evidently, the trans-
mission from Z; to the grid in this structure is most easily evaluated if we
suppose that Zs is infinite and the transmission from plate to Zs if we assume
Z, to be infinite. The fractionated gain for the reference # can, there-
fore, be written down as

o = Zs Zs
Zyv+ 23+ 23 234 Z4 + Z

Z. 6-7)

This may be compared with equation (5-30) of the preceding chapter.
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6.5. Simplified Computation of W

The material of the previous sections has been chosen principally to
provide the simplest possible illustrations of the use of the bridge balance
condition when the analysis, as a whole, is based upon the reference #%,.
It is somewhat misleading, however, in the sense that we are, in fact, likely
to choose /7, rather than zero for the reference only if a relatively elaborate
computation is to be attempted. The reason is apparent if we notice that
the analysis in terms of /# depends essentially upon the variables #/ and
8’, which are obviously more difficult to evaluate than are the correspond-
ing variables // and F in the zero reference analysis.  Thus, the use of the
reference W, calls for an initial investment in labor not required with the
other procedure. On the other hand, it leads in general to simpler rela-
tions. For example, (6-7) is simpler than its zero reference counterpart,
and the simplification is enhanced if we include the fact that (6-7) can be
applied directly to find the final output, while with the zero reference method
it is still necessary to compute the direct transmission. We also need to
know the direct transmission to find the absolute sensitivity in the zero
reference case, whereas equation (4-31) of Chapter IV gives § directly if we
begin with 7 and §’. In general, it appears that these advantages should
outweigh the extra difficulty of determining /" and §’ initially if the circuit
is complicated or if a long series of results is to be obtained, but the zero
reference analysis is probably more advantageous in elementary situations.

Since the computation in terms of /7, hinges primarily upon #” and §’,
it is of considerable interest to consider how these variables can best be
evaluated. %, of course, depends directly upon #,. S’ can be deter-
mined indirectly from F by the methods described earlier in this chapter
and in Chapter IV. This, however, involves the intermediate step of
computing F. If we wish to determine §’ directly, we are concerned, in
general, with the backward transmission from plate to grid in the reference
condition, since it was shown earlier that §’ is equal to the return difference
for the reference #.

Fortunately, the computation both of 7 and of the backward trans-
mission in the reference state can be simplified by means of the bridge
balance condition we have already discussed. The situation is particularly
favorable if the circuit belongs broadly to any one of the general types
illustrated by Figs. 6.2, 6.3, 6.4, and 6.5. In each figure the networks N;
and N, are arbitrary, but it will be seen that the relations between either
the source and the grid or the plate and the load are particularly simple.
For example, in Fig. 6.2, the plate and the load are * effectively in parallel ”
in the sense that if the plate-cathode impedance is a short circuit, there can
be no transmission between either the input or the grid and the load.
Similarly, Fig. 6.3 represents a series arrangement for the plate and load,




THEOREMS FOR FEEDBACK CIRCUITS —B 89

while Figs. 6.4 and 6.5 give analogous relations between the input and the
grid. The circuit need belong only * broadly ” to one of these classes since
minor departures will not seriously affect the results. For example, there
may be other paths between input and output in addition to those shown
by the figures, provided the transmission through these paths by them-
selves is relatively small, since Chapter IV shows that the distinction
between §’ and § or F depends only upon the ratio of €% to .

’

" BB
Input % Ny %_E A Qutput  ‘nput N, N, Output
4 !

Fic. 6.2 Fie. 6.3
Input N NZ Qutput
input N &, Output
Fic. 6.4 Fic. 6.5

This section will deal only with the computation of #,. If we consider
in particular the circuit of Fig. 6.2, we notice that since no voltages can
exist in the output in the reference condition, no voltage difference can
exist across terminals 44" either. We can therefore determine the refer-
ence condition equally well if we begin by short-circuiting these terminals,
provided we define the reference condition as that one which gives zero
current through the short-circuit. This evidently demands cancellation
between the current which would be supplied to the short-circuit by the
rest of the network with the tube dead and the current supplied directly by
the tube. In evaluating the latter, however, we need make no allowance
for residual “ feedback * since the short-circuit destroys the return path.
The reference transconductance of the tube for the circuit of Fig. 6.2 is
therefore equal to the ratio of the current flowing between A4 and A’ to the
voltage between grid and cathode, both quantities being evaluated with
AA’ short—circuited and the tube dead. It will be noticed that this requires
a knowledge of only two transmissions, in comparison with the four appear-
ing in (5-26) of the previous chapter.

A simple example is furnished by the structure of Fig. 6.6. Obviously a
voltage E, between grid and cathode will deliver a current Y3E, to a short-
circuit between plate and cathode when the tube is inactive. We therefore
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have at once ‘
Wy =Y. (6-8)
A structure belonging to the general class of Fig. 6.3 can be analyzed in a

similar fashion if we replace the short-Circuit between 4 and A4’ by an
open-circuit between B and B’. The reference transimpedance is equal to

ias
1]
E@ E‘Z’] E;]
)
O
Fic. 6.6 Fic. 6.7

the ratio between the voltage across BB’ and the current in the grid circuit,
both quantities being evaluated with BB’ open-circuited and the tube dead.
For example, in the structure of Fig. 6.7 we have

Wo = Z3. (6—9)

We may also continue to specify the reference condition in Fig. 6.7 in terms
of admittances. Thus if we begin with any voltage between grid and
cathode in that figure and compute directly the transconductance which will
give a balance between the voltages across Z3 and Zj, with Z5 open, we
readily find that %, as a transconductance, is given by

 ZyZ,

Wo (6-10)

In a circuit belonging to the general class shown by Fig. 6.4 the interrup-
tion of the residual feedback path can be accomplished by supposing that a
voltage generator, of zero internal impedance, is applied between grid and
cathode, while in'Fig. 6.5 we may assume that the circuit includes a current
generator, of infinite impedance, in series with the grid lead. The reference
transimmittance is equal to the ratio between a current or voltage source in
the plate circuit and this voltage or current source in the grid circuit, when
the plate and grid sources are adjusted to produce the same response in the
output with the tube dead. These relations can be exemplified by using
the structures of Figs. 6.6 and 6.7 again, and lead to the results we have
already found in (6-8) and (6-9).

Although these results are physically obvious it will simplify the dis-
cussich in the next section to show how they can be demonstrated mathe-
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matically. We will consider in particular the structure of Fig. 6.2. Itis
convenient in this structure to use a nodal analysis, with the cathode of the
tube on ground. In agreement with our earlier conventions, the input,
output, grid, and plate will be taken as, respectively, the first, second,
third, and fourth nodes. The short-circuit between £ and 4’ will be repre-
sented by adding the arbitrarily large quantity Yy to the self-admittance
of the fourth node.

In terms of this notation, the voltage on the grid and plate corresponding
to a unit source applied to the input with the tube dead can be written as

A% + YiAjza

Ea="po T Yibes | (6-10)
and
Ay
Ei= oy (6-12)

where A° represents the system with the tube dead and Y4 = 0.

The current in Yy is E4Y,. The statement to be established is that the
reference transconductance of the tube is equal to the ratio of this current
to the grid voltage E3 when Yy becomes infinite. A general formula for
the reference is, however, given by (4-23) of Chapter IV. Upon inspecting
(6-11) and (6-12) to find the current-voltage ratio when Y becomes infin-
ite we therefore obtain the required relation in the form

0
A _ _ Bz (6-13)

Ar344 Ajo43

To prove this equation, let the voltage on the output node be written as

A + YiAi24a

E; = A® + Yyl

(6-14)

When Y, becomes infinite, however, the configuration in Fig. 6.2 is such
that E, vanishes. We must therefore have Ajg44 = 0. Upon identifying
A1244 with Agpeq in (4-13), Chapter IV, this gives

ARAyy = Araly. (6-15)

The result (6-13) follows readily from (6-15) if we use (4-13) of Chap-
ter IV again to replace Ajzsq and Aypss by their values in terms of first
order minors.

6.6. Simplified Computation of Transmission from Plate to Grid
The fact that the input and output must be conjugate in the reference
condition, which we have just used to simplify the computation of the
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reference Wy itself, can also be applied to the computation of the plate-grid
transmission when # = #,. This can be illustrated by an examination of
Fig. 6.2. For example, it follows from the conjugacy condition that the
impedance looking to the left from terminals £4’ in Fig. 6.2 must be inde-
pendent of the input circuit when # = ;. Otherwise, if we were to
vary the input circuit, we would expect to find a varying impedance across
A4’ for a prescribed plate generator and consequently a varying current
in the output circuit. Since a variation in the input impedance can be
represented by keeping the input impedance constant and adding a suit-
able generator in series with it, this is impossible by the conjugacy condi-
tion. Similarly, once the current gets over to the input impedance and the
associated elements in Ny, the way in which it divides in the various meshes
of Ny must be independent of the output impedance. We can therefore
divide the total transmission between plate and grid in the reference con-
dition into two factors, one of which depends broadly upon the load imped-
ance and upon the elements of Ny, but is independent of the input imped-
ance, and another which depends upon the input impedance and the ele-
ments of Ny, but is independent of the output.
These relations may be expressed by the following

Theorem: If the structure is in any one of the forms shown by Figs.
6.2, 6.3, 6.4, or 6.5 the actual circuit used in computing the
transmission between plate and grid in the reference con-
dition can be replaced by an equivalent circuit in which the
output impedance is assigned an arbitrary value, provided
the strength of the energizing source in the equivalent cir-
cuit is so chosen with respect to the source in the original
circuit that they give the same voltages on the input side of
the tube for any one arbitrarily chosen value for the imped-
ance of the amplifier input circuit.

The equivalent source may be associated either with the plate circuit or
with the load and the comparison of voltages may be made either at the
grid itself or at the input circuit terminals. In the application of the
theorem, of course, one would attempt to choose the output impedance in
a way to facilitate the final computation of feedback, while the input
impedance would be chosen to facilitate the intermediate step of comparing
the voltages.

The notation of the preceding section will be retained in the proof of the
theorem. The fact that the output circuit is arbitrary in the equivalent
structure will be represented by adding the arbitrary quantity Y, to the
self-admittance Yy, while the arbitrary input mesh assumed in the voltage
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comparison will similarly be represented by the addition of ¥y to ¥iy.*
Let I, represent the actual plate source and I the equivalent source,
while E; is the voltage which each produces across the input. When the
voltage comparison is made, we have

_ Ag
Eyv= L g yar v (6-16)
and
A,
E =1, 2 (6-17)

A+ YAl + YaAg, + Y1Y2A{122’

where A’ is the determinant of the actual circuit when Y; = Y, = 0 and
W = Wy. In accordance with the conditions of the theorem I, must be so
chosen with respect to I4 that the E;’s determined by the two equations
are equal.

On the other hand, when the input circuit is assighed its actual admit-
tance value, the equivalent source I, will produce a voltage between grid
and cathode given by

Ag3

=J,——B .
Es 2N+ YoAh,

(6-18)

If we replace I; by its value in terms of I, as determined from equa-
tions (6-16) and (6-17) this can also be written as

Aghgs A'(A" + V1AL + Y5455 + YiVeAq100) |

E; =1 _
ST Ay (A" + Y1A71)(8" + Ya4) (6-19)
It follows from (4~13), Chapter IV, however, that
A'Al122 = Af1b5s, (6-20)

if we recall that, since there can be no transmission from input to output in
the reference condition, we can set Aj, = O.

With the help of (6-20), it is readily seen that the second factor of
(6-19) must be equal to unity. This equation therefore reduces to

Ag1893
A AL,

E3 = I4 (6—21)

* With corresponding changes in wording, if we use an impedance rather than an
admittance analysis. As in the preceding section, it is assumed as a matter of simplic-
ity that the input, output, and cathode are all grounded, so that changes, for example,
in the input and output affect only a self-admittance term.
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But the transmission from plate to grid for the actual circuit is given by
A
E;=1,—7 (6-22)
The theorem is therefore demonstrated provided we can assume that

A41493
Audl, 1. (6-23)
The final step is to establish the fact that (6-23) holds for any structure
of the general type illustrated by Figs. 6.2 to 6.5. It is sufficient to examine
Fig. 6.2. From an argument similar to that used to establish equation
(6-15) it is clear that Agy4y = Asges = O for this structure. Correspond-
ing to (6-15) itself we must therefore have

Ag1Ayy = AjyAy, (6-24)
and ;
Ap3Ayy = AlyAys, (6-25)

from which (6~23) follows by direct division.

The proof of (6-23) for the other configurations can be made by the same
methods. We may also notice that although (6-23) was established on the
assumption that the equivalent source was associated with the output and
that the voltage comparison was made at the input, it would also have been
obtained if we had introduced the equivalent source in the plate and com-
pared the two voltages at the grid, so that the theorem holds for this con-
dition also.

As a simple example of the theorem, we may consider the structure
previously shown by Fig. 6.7. Z; in this figure will be taken to represent
the input circuit and Zs to represent the load. For the equivalent source,
it is convenient to suppose that Zs = o, since this removes all the plate
side elements from the computation. In making the voltage comparison,
on the other hand, it will be supposed that Z; = « since this allows us to
ignore the grid elements. If the original plate current source is Iy, the
voltage across Zs (or across Z;) for the comparison condition is given by
12324/ (Z3 + Z4 + Z5)]. The equivalent source must of course be
adjusted to give this same voltage across Z;. The equivalent source, how-
ever, corresponds to an open plate circuit. When we restore the input
impedance to make the actual measurement, therefore, we find that a
fraction Zg/(Z; + Zs + Z3) of the voltage which it would produce across
Z3 in the comparison condition must appear between grid and cathode. If
we include also the factor /#” to give complete loop transmission, therefore,
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the return ratio for the reference # can be written as

' Zs Z,

T Zy 4 Zy ¥ Zs Zs+ Zs + Zs
Equation (6-26) is evidently the expression for the return voltage which

would be deduced by inspection upon the assumption that Zg is so small

compared to the other impedances that there is no interaction between the
two ends of the network. The choice of the reference value # is equiva-

T Z. (6-26)

123 i

Fic. 6.8

lent in effect to destroying the interaction between input and output, so
that in terms of this reference value the equation becomes an exact expres-
sion for T’ even when Zg is not small. In other words, in the reference con-
dition the two forward couplings represented by Z; and the transconduct-
ance of the tube cancel one another. The transmission backward from
plate to grid is therefore unilateral and the two ends of the network are
independent of one another in exactly the same way that the plate circuit
and grid circuit of an ideal vacuum tube are independent.

6.7. Amplifier with Local Feedback — Computation of W

These various theorems will be exemplified by means of the structure
shown in Fig. 6.8. The circuit is a multiple loop amplifier of the general
type illustrated by Figs. 3.14 and 3.15 of Chapter III. The main feedback
is provided by the branch Yg. The last tube is provided with additional
local feedback by means of branches Y3 and Ys. This stage is evidently
similar to the structures which we have already analyzed, as complete
amplifiers rather than as constituents of a multiple loop circuit, in connec-
tion with Figs. 6.6 and 6.7 of the present chapter.

Although the analysis does not depend upon any particular assumption
concerning the elements, we may conveniently suppose that Y is a para-
sitic grid plate capacity and that Y3 is a physical element deliberately
added to enhance the total feedback on the tube. Y3, and Y, are intro-
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duced to represent the fact that in a physical tube a portion of the total
grid and plate admittances must be considered as going directly to the
cathode and this portion must be distinguished from the portion which goes
to ground when the cathode is off ground, as it is in this case. Y; and Y,
represent normal parasitic capacities and design elements connected to
ground while Y7 is used to represent the total output admittance.

The presence of both Y3 and Y does not appreciably complicate the
structure in theory, but it leads to considerably more complicated circuit
equations, principally because the circuit with both elements present is
essentially a bridge rather than a series-shunt configuration. In order to
simplify the discussion, therefore, each stage of the analysis will be begun
on the assumption that only one of these two ele-
ments is present and the complete equation will be
supplied only as a final step.

Since the properties of the circuit for the first and
second tubes are similar to those which would be
found in a single loop amplifier, we can turn im-
mediately to the output stage. The first step is to
determine the reference value # for the transcon-
ductance. Since no current can flow in the output
circuit for the reference condition, we can sup-
pose that Y7 is removed and the fundamental con-
dition then becomes that the sum of the voltages across Yy and ¥ must
vanish. The voltage across Yy, however, is obviously very small and will
be neglected also. The circuit is thus reduced to the form shown by Fig.
6.9 and the problem becomes that of determining a transconductance #,
such that there is zero transmission from A4 to B.

It follows from the discussion early in this chapter that 7, must be inde-
pendent of Y7 and Y7, so that any convenient values for these admittances
can be assumed in making the computation. If one of the branches 3 or 6
1s missing the structure reduces to one of the types shown by Figs. 6.6 and
6.7, for which the reference transconductance has already been calculated
by equations (6-8) and (6-10). With suitable changes in notation to agree
with Fig. 6.9 the results may be reproduced here as

Frc. 6.9

Y.
Wy = Yoy (6-27)
Y3
if Yg vanishes, and
Wy =Ys, (6-28)

if Y3 is infinite.
In the general case, when neither ¥ nor Yy can be ignored, we can con-
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tinue to determine % from a transmission computation, using arbitrary
values of Y; and Y. A convenient choice is now Y5 = 0and Y; = —Y5.
This choice interrupts the return path from plate to grid, so that the net
output voltage, which must be set equal to zero, can be calculated by simple
superposition of the voltage due to the original source and the voltage due
to the flow of plate current. With the tube dead, and these values for Y;
and Y, it is easy to calculate that a current source /4 applied to node 4
in Fig. 6.9 will produce the voltage

N S
' Y3(Yy+ Ye)
from node B to ground, that is, across Ys. The grid-cathode voltage pro-
duced by the same energizing current is —74/Y3. Allowing for the phase
reversal in the tube, the corresponding plate current in the reference con-
dition is J4#y/Y3. When this current source is applied to the network,
again with the tube dead and the chosen values inserted for Y; and Y, the
resulting voltage drop across Y5 is

Ly 1 < Y6>

= (1~ 32)- 6-30
' Y; Y+ Ys Y, (6-30)
But the sum of the two voltages in (6-29) and (6-30) must be zero. The
correct value of # is consequently
_ Y, Vs 4+ YoYe 4+ YoV, + Y3Y6,
from which (6-27) and (6-28) follow as special cases.

It is also possible, on the other hand, to determine #, directly from the
nodal equations without using any special devices. Since this procedure is
perfectly general, it is worth illustration. For the circuit of Fig. 6.9, the
nodal equations appear as

E (Y1 + Y2+ Ys) — EgYs — EcY, = Iy,
~Ea(Yo — W) + Ep(Vs + Y5 + ¥o) = Ec(Ya + #) = 0, (6-32)
—Es(Yo+ W) - EgYy + Ec(Ys+ Y3+ Yy +#) =0,

if we assume that the circuit is energized by the current 74 flowing into
node 4. When W = Wy we must have zero transmission from 4 to B.
This corresponds to Ayg = 0 so that / is the solution of
— (Y — %) =Yy + %) _
— Y2 + W) Yo+ Y3+ Yy + #5)
When the determinant is expanded, we obtain again the formula for %7,
already found in (6-31).

Ep (YaYe + Y.V + YoYVu+ Y3Ye) (6-29)

Ep

Wy

(6-31)

0. (6-33)
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6.8. Amplifier with Local Feedback — Computation of Local Feedback

We will assume that the final object of the analysis of the circuit of
Fig. 6.8 is the determination of the relative sensitivity for the last tube.
The absolute sensitivity for this tube can, of course, be determined immedi-
ately from the relative sensitivity and the ratio /%, which is fixed by
the known value of #,. It is convenient to base the computation of §’
for the last tube upon the theorem following equation (5-22) of Chapter V.
We will take #; to represent the transconductance of the output tube and
W, that of one of the preceding tubes. The reference values which appear
in the statement of the theorem will be chosen as /#5 and zero, respectively.
The return difference of the output tube for the reference # is, of course,
the same as 8. Moreover, when #; assumes its reference value the
return difference for /5 is unity, since the main loop is opened. Similarly,
with W, at reference the return difference of 7, for the reference 7 is
merely that which would be obtained from a consideration of the ““local
structure of Fig. 6.9, including the associated line and B circuit impedances.
It follows from the theorem, therefore, that the actual relative sensitivity
for 7, is the product of the return difference for 5 and the “local”
relative sensitivity for #7.

This section will be concerned only with the computation of the local
sensitivity. If Y = 0, the local circuit is identical with that previously
shown by Fig. 6.7 except that Z; + Zg has been added in parallel with Zs.
The local sensitivity can, therefore, be immediately written down from
equation (6-26) in the form

Z2 Z4
Zy 4+ Zy+ 2323+ 24+ Zy

where Z, has been written for brevity to represent the complete impedance
composed of Z; and Zg in parallel with Zs.

If Z; vanishes, on the other hand, the circuit is of the type represented
by Fig. 6.2. The theorem on the computation of the feedback by the use
of an equivalent source is, therefore, still valid. In this instance it is con-
venient to suppose that the equivalent source is defined by Yy = « and
that the comparison of grid responses is made for the condition Y1 = «.
With Y; = o, a current I; in the plate circuit will evidently produce a
voltage I;/(Yy + Ys + Y,) between B and C. With Yy normal, on the
other hand, a generator of unit voltage and zero internal impedance applied
across B and C will produce a voltage Y5/(Yy + Yz + Ys) between A4 and
C. The local sensitivity is, therefore,

Ye w .
Yi+Y,+Ys Ya+Ye+ Yy

ZsW, (6-34)

s =1+

Sl =1+ (6-35)
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If neither of the branches 3 or 6 can be ignored the analysis becomes
considerably more complicated. Since the circuit no longer falls in any one
of the classes represented by Figs. 6.2 to 6.5, it is not possible to use the
theorem on equivalent sources to compute the feedback. We can, how-
ever, develop a suitable expression directly from the expansion of the
system determinant. As an alternative which requires substantially the
same algebraic work, although it may seem simpler, it is also possible to
derive the sensitivity from the return difference. By ordinary circuit
analysis the return difference for the local circuit can be found as

1Yo + Y(Y1 + Yy) + Y3Y5
a+ 5Y3 -+ CYG + dY3Y6

F=1+ W, (6-36)

where
1 1 1 1

a = Y1Y2Y4Y9 <—— + ~r + 5 +—))

b= (Y1 + Y)(Yi+ Yy), (6-37)
¢ = (Y1 + Yo)(Ys + Ya),

d=Y1+Y,+ Y+ Y,

We know, however, that S/ is equal to the F of (6-36) divided by the value
which F would assume if we set #” = #,. From the known value of %,
this gives
(V1Y + Yo (Y1 + Yy) + VYl (Y3 — Vo) #/ .
(V1Y + Y3Ye) (YiY5 + YaYe)+ Ya(a + Y3+ dY3Y5s)
(6-38)

S =1+

6.9. Amplifier with Local Feedback — Final Properties

In accordance with our preceding discussion the actual §’ for the third
tube in Fig. 6.8 can be obtained by multiplying (6-38) by the return differ-
ence for one of the other tubes. The return ratio for either the first or
second tube, however, is simply the transmission around the main loop.
This in turn can be broken up into two components, one representing the
transmission from A4 in Fig. 6.9 to some point such as B, say, and the second
representing the transmission around the rest of the loop. The second will
be symbolized by K and will be assumed to be known since it presents no
special problem.

Since we already know S/ for the last tube, equations (6-5) and (6-6)
allow us to compute the transmission from A4 to B as soon as the fraction-
ated gain of this tube for the reference condition is determined. It will be
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recalled that the grid transmission term in this gain can be calculated for an
arbitrary choice of the load impedance and the plate transmission term for
an arbitrary choice of the input impedance.

Let it be supposed, first, that Yg = 0. It is then convenient to choose
the arbitrary impedance as an open circuit in each computation. This
has already been examined in connection with (6-7). For the present
circuit the resulting transmission from A4 to B can be written as*

1 Z,Z Z4Z
o4 = — 12 = 6-39
¢ ST Zi ¥ 2o+ 23 Zs + Za+ Zo (6-39)

where, corresponding to the fact that we have assumed Y5 = 0, S/ must be
determined from (6-34).

If we assume Zs = 0, on the other hand, it is most convenient
to determine the grid transmission for the condition Zg =0 and
the plate transmission for the condition Z; = 0. With these two assump-
tions the two transmissions are readily seen to be 1/(Y; + Y2 + Yg) and
1/(Ys + Y6 + Ys). The gain from A4 to B consequently becomes

1 1 1
TS Y+ Y+ Y Yo+ Y+ Y

&AB

w, (6-40)

where 8/ is determined from (6-35).

If neither of the branches 3 or 6 can be neglected the analysis is naturally
somewhat more complicated but it can be made by the same general
methods. For example, in computing the transmission to the grid, we can
conveniently assume that Yy = —Yg[(¥Yy + Y3)/(Y1 + Ys)]. This is
the value of Yy which gives zero transmission from Y, to Y so that the flow
of current in Y due either to transmission in the passive parts of the net-
work or to transmission through the residual transconductance # will not
affect the voltage across Y,. The computation can thus be made
for any assumed value, such as a short circuit, for Yy Similarly
in computing the transmission from plate to load we can assume

Yy = —Yo[(Ys + Yy)/(Ys + Yy)] which allows us to short-circuit Y.

* The numerator of (6-39) includes the factors Z; and Zs, for which no correspond-
ing terms exist in (6-7). These factors are introduced to express the result in nodal
rather than mesh terms. Thus in (6-7), where an impedance analysis was used, the
driving force was taken as a unit generator in series with Z, and the response was
stated in terms of the current through the load. The introduction of the factor Z,
in effect expresses the driving force as a unit current applied to Z;, while the intro-
duction of Z, is equivalent to expressing the response as the voltage across the load.
A nodal analysis is chosen here for consistency with the other equations of this section.
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The expression for the transmission from A to B is accordingly

_ 1 Y - Y5
TS Y\ Yo+ Y\ Y5+ YoV + YV,
Y; ~ Y
X YaY i+ Y3Ys + YV3Y, + Y,Y,

eoAB

w, (6-41)

where the first and second expressions involving the Y’s are, respectively,
the transmission from the source to the grid and from the plate to the load.

Upon multiplying the appropriate one of these expressions by K, which
represents the transmission from B around the rest of the loop, including
the transconductance of the second tube, we secure the complete u8 charac-
teristic. This then is —T for either the first or the second tube. In
accordance with the theorem on the relation between two return differ-
ences, the actual relative sensitivity for the third tube can be obtained by
multiplying the corresponding F for the first or second tube by the §/
for the third tube, as expressed by equations (6-34), (6-35), or (6-38).
For example, if we assume Y3 = « and write §’ for the total relative
sensitivity of the third tube, the result from (6-35) and (640) is

1 1 1 ,

S Y1 +Y,+Ys Y4+Y6+Y9WK>

y=$0+

(642)
1 1
Yi+ Y, + Y Yi+ Y+ Y

As the final step in the analysis we may compute the distortion which
would appear in the load as the result of a prescribed distortion generator
in the plate circuit of the third tube. The theorems of Chapter V show
that this is equal to the distortion which would flow in the load when the
third tube is in the reference condition divided by §’ for that tube. We
have, however, already computed the ratio between a given plate current
and the voltage between B and ground for the reference condition. If we
let £ represent the ratio between the voltage at B and the resulting voltage
across the final load impedance with the amplifier input circuit open, there-
fore, the results can be immediately written down as

(Ys + K)#.

_k Z4Z9 . =
EL_S'Z?,+Z4+ZQ I;, for Ye=0
k 1
LI S— Zg =
S ViEY o7 o Za=0 (643)
k Y; - Y,

_— — I. . l
S, Y.V, + Y3V + Y.Y, + V.Y, j» 1n general,
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where I; is the prescribed distortion generator and §” in each case is the
appropriate relative sensitivity for the third tube.

It will be recalled that a double loop feedback circuit essentially similar
to the one under discussion here was used in Chapter IV to illustrate the
fact that the sensitivity of a tube in the u circuit of a multiple loop structure
was not necessarily equal to its return difference. The illustration can be
made somewhat more specific with the help of the present equations. For
example, suppose we set W’ = —W, in (642). This is equivalent to
setting # = 0, so that the corresponding return difference will be unity.
It is clear, however, that the ratio of relative sensitivity to return difference
is independent of /7, so that it will be the same for actual operating con-
ditions as it is for this special choice. Upon introducing # = Y5, from
(6-28), for the case represented by (6-42) we therefore have

s 1 Ys(Ys + K) ]
F Y1+ Y+ Ye)(Ys+ Yo + Yo)

It is evident from (6—44) that if we can make K large enough the sensi-
tivity* can be made much greater than the return difference. On the
other hand, by choosing special values for K and the various Y’s we can
also secure a sensitivity which is much smaller than the return difference.
The values of these quantities which would appear naturally in normal
design practice are probably not such as to make either extreme very likely.
The fact that the sensitivity and return difference are not necessarily identi-
cal is of considerable theoretical interest, however, since the limitations on
available ““ feedback > developed in the following chapters are actually
limitations only on the return difference.

(6-44)

* No distinction between § and §” need be made here, since we can readily choose a
W, small enough to make the two approximately equal, without affecting the rest of
the argument.



CHAPTER VII
StasiLity AND PrysicaL Reavrizasrirry

7.1. Introduction

THE preceding chapters have been devoted largely to the problem of
active network analysis. It has been assumed, in other words, that the
structure under consideration was given, and that we were interested in
finding out what it would do. To this end, the mesh and nodal equations
were first introduced. The succeeding chapters consist principally of
applications of these equations to various situations, with particular atten-
tion to what they could tell us about the relation between a single given
element and the characteristics of the complete network within which it
appears.

Beginning with the present chapter, attention will be turned broadly
from problems of analysis to those of synthesis or design. It will be
assumed in other words that our primary interest is in working backward
from a prescribed type of response characteristic to a network which might
exhibit it. This chapter will serve only to introduce the subject. It is
devoted principally to a consideration of the requirements which a net-
work must meet if it is to be stable and of the limitations which this imposes
on the network characteristics which are available for design.

7.2. Design Methods and the Problem of Physical Realizability

The development of final design methods for feedback amplifiers is
approached here by way of a lengthy and perhaps indirect introduction.
Before beginning the discussion it may consequently be desirable to say a
few words concerning the point of view which motivates this approach.
It must be recognized to begin with that the processes of synthesis or design
are in some respects essentially different from those of analysis. If a net-
work is given, only one response to any prescribed forct is possible, and that
response can, in theory, be obtained by a mechanical computation, so that
the whole operation is reduced to a routine level. The design process can-
not be described so exactly. In a broad sense it consists in the construction
of a larger unit by the establishment of a pattern of relationships among a
number of smaller and more easily controlled units. In a feedback ampli-
fier, for example, we are concerned in the first instance with the provision
of suitable characteristics for the amplifier as a whole by the establishment

103
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of an appropriate pattern of relationships among the separate units, such as
tubes, input and output circuits, feedback and interstage networks, etc.,
of which it is composed. Beyond this point we may be concerned with the
relation between any one of these circuits individually and the various
elements from which it is built.

In almost all design situations several or many patterns of relationships
may yield a satisfactory result. For example, we may obtain a given for-
ward gain for a feedback amplifier from various combinations of input and
output circuits, tubes, and interstage networks. On a smaller scale, a
given interstage characteristic can usually be represented, within tolerable
limits, by structures of several different physical configurations. The
choice between the possible solutions may depend upon ulterior considera-
tions, such as economy, reliability, power consumption, the speed with which
parts can be secured, etc., which are not readily taken into account, at
least in detail, in a theoretical discussion. Or it may be purely arbitrary.
In any event the establishment of any one pattern involves essentially an
effort of imagination on the part of the designer. As such it is a creative
operation, on a more or less difficult plane, and defies exact analysis. Ina
group of structures which are very much alike, such as a set of amplifiers
meeting similar requirements in about the same frequency range, a general
type of pattern may become so well established that much of the work is
reduced to a routine level. As the diversity of application increases, how-
ever, the essentially creative nature of the design process becomes more
apparent.

It follows from this discussion that design methods suitable for a variety
of applications can never be reduced entirely to a set of rules. They are
best when they leave the final synthesis in the hands of the designer but
stress the development of conceptions and processes which make the
establishment of any particular set of relationships as simple and easy a
matter as possible. This can be done in part by pointing out types of
relationships which are plausible but either cannot be carried out or lead to
unsatisfactory results. It is futile, for example, to plan a feedback ampli-
fier about an assumed input transformer whose gain is greater than can be
obtained with the existing parasitic capacities. On the positive side,
design can be expedited by the construction of general patterns of relations
which can be extended to a variety of situations by the choice of numerical
values for a few parameters, and by the discovery of simple methods of
specifying the subsidiary units which make up a complete structure. An
excellent example here is furnished by conventional filter theory. The
general pattern is the composite filter with matched image impedances.
The subsidiary units are the discrete sections. They are particularly easy
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to deal with since an individual section is specified, in essentials, by a single
parameter, and in their significant properties the sections are directly
additive. The choice of any particular combination of sections to meet a
particular set of requirements, however, is left in the hands of the
designer.

It is evident from this background that what we need most of all in
developing design methods for feedback structures is a characterization of
the available units which may enter the complete structure in terms which
are as easy as possible to handle in planning the over-all design. This is,
of course, necessary if we are to avoid blind alleys of the type described
previously. It is also required in planning any general design patterns
which are likely to be of practical value and it is necessary again in fixing
the proportions of any specific pattern. As a matter of actual experience,
it appears that if the characteristics of the units of the amplifier can be
properly specified in broad terms the road to a final detailed design is
relatively straight.

In network synthesis, a characteristic is “ available ” in the broadest
sense if it can be furnished from some combination of physically obtainable
elements. The restriction to physical elements is one which does not
appear in network analysis. It makes no difference in the routine of deter-
mining the response of a given structure whether the elements are positive
or negative, to say nothing of whether or not they are accompanied by
parasitic effects of the types which might occur in practice. In network
design, however, the restriction is fundamental and will be the next object
of investigation. It is unfortunately a difficult topic and will require
several chapters. ’

The quantities which appeared most conspicuously in the preceding
analysis were the driving point and transfer immittances, the return differ-
ence, and the sensitivity. They may be lumped together under the general
name, network functions. They are all defined as ratios of determinants so
that they are all rational functions of p. It will be recalled from Chapter I
that any rational function can be specified, except for a constant multiplier,
by its zeros and poles. In the next few chapters the condition of physical
realizability will be discussed in terms of the restrictions it imposes upon
the location of the zeros and poles of the various network functions on the
complex p plane. Following this discussion, the restrictions on the zeros
and poles will be converted into equivalent restrictions on the behavior of
the functions on the real frequency axis. This background is necessary in
order to provide a specification in useful form of what is available in design-
ing a feedback structure. With it as a foundation we will at length be
able to approach the actual design problem directly.

< >
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7.3. Criteria of Physical Realizability

Before we can study the restrictions which the condition of physical
realizability places upon available network functions, it is evidently neces-
sary to find some formulation of what we mean by physical realizability
which can be used as a basis for deduction. Perhaps the most obvious for-
mulation is expressed by the statement that a physically realizable network
is a combination of vacuum tubes and positive inductances, capacities, and
resistances. 'This, however, is both awkward and misleading. Except in
the very simplest configurations a study of the relationship between the
signs of the elements and the resulting network characteristic entails
intolerable algebraic complexities. Moreover, it can readily be shown*
that any negative element can be simulated, at least in the ideal case, by a
suitable combination of tubes and positive elements. The distinction
between positive and negative elements thus cannot be the heart of the
problem. :

Although the sign of the elements cannot be used as a basis for analysis,
some importance can be attached to the fact that the elements must at
least be real. It follows immediately from this that if the frequency vari-
able is taken as p, the coefficients in the mesh and nodal equations, and
therefore the coefficients in the network functions, must also be real. If
we replace p by its conjugate in any term of a network function, conse-
quently, that term must assume the conjugate of its original value. Since
conjugate values everywhere in the function must lead to a conjugate result,
this establishes the

Theorem: A physically realizable network function’assumes conjugate
complex values at conjugate complex points on the p plane.

For most applications this theorem can be expressed more conveniently
by means of the following two corollaries:

1. Any zeros and poles of a physical network function which are not real
must occur in conjugate complex pairs.

2. The real and imaginary components of a physical network function
on the real frequency axis have respectively even and odd symmetry
about the origin. ‘

The first of these evidently follows from the fact that zero and infinite values
of a network function are their own conjugates, while the second is estab-
lished if it is noticed that symmetrical positive and negative real frequencies
are a special case of conjugate p’s. We may also observe that since the
zeros and poles specify the network completely except for a constant

* See, for example, the circuits described near the end of Chapter IX.




STABILITY AND PHYSICAL REALIZABILITY 107

multiplier, and the multiplier must be real if the second corollary is to hold,
the two corollaries together are equivalent to the original theorem.

The theorem on real element values is sufficient to restrict the range of
available characteristics only very generally. The field can be narrowed
much further from a consideration of the stability of the network. Itisa
familiar fact that many hopefully designed feedback structures “ sing,” or
break into spontaneous oscillation, when the circuit is closed. This is
customarily explained by regarding the free oscillation as a manifestation
of one of the natural transients of the system. It is assumed, in other
words, that the system has been exposed to some small shock which pro-
duces a normal transient response. In most systems transients are expon-
entially decreasing functions of time and quickly die out. If the system
sings, however, it is supposed that one of the transients is negatively
damped, and so increases with time. In this case it will eventually become
very large, no matter how small the initial shock may have been. Since
random small shocks, on the level of thermal vibrations at least, are una-
voidable, the phenomenon must occur if the system has any possible tran-
sient response which increases with time.

In a physical situation the amplitude of the oscillation may become
large enough to burn out part of the system. Otherwise, it is limited by
the inability of the system to maintain a linear response characteristic for
amplitudes beyond a certain range. This is true, for example, in an ordi-
nary oscillator, where the amplitude is limited normally by the physical
possibilities of the output tube. Since the analysis in this book is con-
fined to linear circuits either eventuality removes the structure from our
purview.*

It may seem at first sight that although the possibility that the network
may break into free oscillation may be important, it should be considered
separately from our immediate problem, which is the investigation of the
steady state characteristics of the network. A connection between the
two problems, however, appears from the well-known fact that the tran-
sient response of a network can be predicted from its steady state charac-
teristics. ‘The analysis given in later chapters shows that this connection
is so close that the steady state characteristics which may be obtained from
stable structures are radically limited in comparison with the characteris-
tics obtainable from mathematical functions chosen at random. Since
there is no point in discussing the hypothetical “ steady-state *’ character-

* In some modern oscillator circuits the amplitude of the oscillation is limited by a
thermally controlled element. These are essentially linear circuits, since the change
in the thermistor over one cycle is negligible, and it is not intended to exclude them
here. After the thermistor reaches its steady value they can be regarded as stable
structures, but with a root on the real frequency axis, as described later.
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istic of a structure which will in fact sing when it is constructed, there
is economy of thought in combining the two ideas to begin with. The
essential statement of what we will mean by physical realizability can
therefore be expressed by the following

Definition: A network function will be said to be physically realiz-
able if it corresponds to a network of real elements having
no modes of free vibration whose amplitudes increase
indefinitely with time.

This will also be regarded as a definition of what is meant by a stable*
circuit. The relationship between the modes of free vibration and the
steady state network functions is described in the following sections and,
more generally, in later chapters.

The definition just given is the foundation upon which the analysis of
general circuits, including both vacuum tubes and passive elements, will
be based. A structure composed exclusively of passive elements, on the
other hand, cannot give as wide a variety of characteristics as would be
admissible from this definition alone. Since many of the units of which a
typical feedback amplifier is composed, such as the interstage networks and
the feedback circuit itself, are purely passive, it is of interest to determine
what these additional restrictions on passive circuits may be. An analysis
of this problem is given at the end of this chapter. Pending this analysis,
the following results will be assumed:

1. A passive circuit is always stable.

2. The real component of a passive immittance is never negative at real
frequencies.

3. If a passive network is driven by a single real frequency generator the
power delivered to the network as a whole is always at least as great
as the power consumed by any one resistance in the structure.

The second and third of these conditions are evidently merely consequences
of the principle of conservation of energy, in combination with the fact
that a passive network cannot contain a source of power. The justification
for the first may not be quite so obvious, but the proof given later estab-
lishes it on the same general grounds, using the methods of classical
dynamics.

* It is to be noticed that stability as defined here includes, as a limiting case, the
possibility of purely sinusoidal transients which neither increase nor decrease with
time, such as characterize purely reactive structures. This limiting case is discussed
in more detail in a later section.
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7.4. Stability and the Roots of A

Our first object will be the development of some analytic tool for investi-
gating the relation between the steady state characteristics of the network
and its stability. The stability of the circuit depends upon its possible
transient responses and is therefore best determined from a study of the
differential equations representing it. This is facilitated by the fact that
the general mesh and nodal equations of Chapter I were first developed in
differential form. Equations (1-2) of that chapter, for example, give the
diﬁ"erential mesh equations and can be rewritten here as

LII + R]_[ll + Dll flldf + e oo
+ Ll" + Ryinin + D]n findt =

L21 + Ro1i1 + Doy f idt + - -

din
+ L2n ! —+ Rznln -+ D2n flndl =

.....................................................

La d11+R 11+ Dpy | 41dt + -

din
+ Ln‘n d + Rnnzn + Dnn indt = 0.

These are essentially the same as the orzgmal expressions, but the instan-
taneous currents have been represented by small rather than capital letters
and differentiation and integration with respect to time have been written
out explicitly in order to avoid confusion with later notation. The driving
voltages on the right-hand side of the equations have also been omitted,
since we are interested only in the free response of the system.

Let it be supposed that the possible transients are exponentials of the
general form ¢?’. The individual currents 73, 7s, - - -, 7, can be written as
6P, I,eP, - - -, I,6P', where the I’s are constants whose magnitudes will
depend upon the original disturbance. In general, the p’s representing
possible transients may exist either as real quantities or as conjugate
complex pairs. If p is complex the  currents” I1eP%, I,eP* etc., must
also be complex. As in Chapter II, however, the real components of
these “ currents” satisfy the differential equations by themselves and
may be taken to represent the actual physical transients.

Upon substituting I;e??, Ie?’, etc., in (7-1) and dividing out the com-
mon time factor, ¢??, the result appears as
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Itis evident that I; = I, = - -+ = I, = O is always a solution of equations
(7-2). Since there are 7 equations and # I’s we may expect, in general,
that the I’s will be uniquely determined, so that this is the only solution.
If the transient is 