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A TWO STAGE REAL TIME FAULT MONITORING SYSTEM 

A. Pouliezos - G. Stavrakakis - G. Tselentis 

Technical University of Crete 
Ag. Markou Str., 731 32 Chania, Greece. 

ABSTRACT 

In the present paper, a two-stage fault monitoring scheme is 
proposed and evaluated for discrete linear stochastic systems in the 
event of sensor noise degradation. In the first stage, fault detection 
and partial isolation is achieved using simple statistical tests based 
on the failure effect on the joint pdf of the Kalman-Bucy filter in­
novations. Complete fault identification (fault size, fault location, 
time of occurrence) is performed by the subsequent use of generalized 
likelihood ratio test (GLR). The analysis is verified by computer 
simulation of a first order discrete stochastic system. 

I. INTRODUCTION 

Consider the following discrete-time dynamical system: 

x(k + l) = • x(k) + w(k) 
y(k) = H x(k) + v(k) +~y(k)ok,9 

(l) 
(2) 

where x(k)ERn is the state with gaussian initial condition x(O) of mean 
xo and covariance Po, yERP is the observation sequence and {w( k)}, 
{v{k)} are independent, zero mean, white Gaussian sequences with 
E[w(k)w(k) T] = Q and E[v(k)v(k) T] = R. Also the noise sequence ~y(k), 
modelling the additional sensor noise, is conveniently defined as gaus­
sian of zero mean and unknown constant variance Sy independent of x(O), 
w{i), v(i) for all i,k. Finally ak 9 is the step function which is 
unity if k~9 and zero otherwise. In 'this context 9 mode 1 s the unknown 
fault onset time. It should be noted that the time invariance of the 
system under consideration is used only for simplicity and that exten­
sion to time-varying systems is straightforward. 

In normal operation, the statistical properties of the residuals 
are: 
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- Gaussian distribution, whiteness, stationarity, zero mean and 
covariance given by, 

C(k,m) = 0, k m 
C(k,k) = H P(k/k-1) HT + R 

where P(.) is the state estimate error covariance [1]. 
These properties mean that the joint pdf of the innovations will 

be completely characterised by its first and second moments. It is ap­
propriate in fault detection situations to consider sliding windows of 
data in order to achieve fast detection times. To ease notational com­
plexity the following definitions are made for a window of size nw: 

(yj,k)T = [y(j)T y(j+1)T ... y(k)T] E RP*, 

yj,k = E[yj,k], 

where p* = p x (k-j+1) = p x nw and 

cj,k = cov(yj,k) = E[yj,k _ yj,k) (yj,k _ yj,k)T] E Rp*xp* 

Using these definitions the pdf of the gaussian vector yj,k is: 

. k l p(yJ' ) = . -. . . . (2n)P*/2icj,ki1/2exp{-1/2(yJ,k_yJ,k)T(cJ,k)-1(yJ,k_yJ,k)} 

If no fault occurs, 

. k k 
p(yJ' ) = n 

m=j 

1 
(2n)P/2ic(m,m)i1/2exp{-l/2(yo(tn)TC(m,m)-1Yo(m)} 

= n(j,k) 

(3) 

since E{y0(m)} = 0 and cj,k = diag[C(m,m)], m = j, j+l, ... , k. Here 
v0(m) denotes the normal operation residual s~quence. 

2. JOINT PDF OF RESIDUALS IN THE EVENT •oF ADDITIONAL SENSOR NOISE 

If additional sensor noise exists, it is shown in [4] th~t t~e 
residual covariance matrix is no longer black diagonal, resu1t1ng ln 
correlated residuals which retain their zero mean property. The 
covariance is given by: 

A 
cov[y(k)y(m)] = C(k,m) + .L Gf(k,i) Sy G~(mm,i), A=min{k,m} (4} 

1=9 
= Cf(k,m) 

where Gf(i,j) are signature matrices which det~pend on the specific nature 



Gf(k,9) = - H. Ff(k-1,9) k>9 
Ff(k,9) = - K(k) Gf(k,9) +. Ff(k-1,9) k~9 

Gf(9,9) = I 
Ff(k,9) = Gf(k,9) = 0 k<9 

The joint pdf of the residual sequence then becomes, 

(5) 

. k 
P(y.l' I H1 ,9,Sy) 

1 
p*/2 j,k 1/2 exp{-1/2 [~'k]T[cfj,krl[.-i,k])} 

(2n) I cf I ,-
where, 

cf;,k " [ c;,:-1 0

cp l 
and 

cfe,k = 

[C(9,9)+Cf(9,9)] Cf(9+1,9) 

C(9+1,9+l)+Cf(9+1,9+1) 

Cf(k,9) 

Cf(k,9+1) 

C(k,k)+Cf(k,k) 

cfj,k is [p(k-j+l)]x[p(k-j+l)] 
cf9,k is [p(k-9+1)]X[p(k-9+1)J 

cj,9-l is [(9-j)p]x[(S-j)p] 

It should be noted that as shown in [3], the same qualitative ef­
fects on the residual sequence are obtained if additional plant noise is 
present. Therefore a full monitoring scheme should also have the 
capability to infer about this case as well. This is the topic of cur­
rent research. 

3. TESTING FOR ADDITIONAL MEASUREMENT NOISE 

The results obtained in Section 2 for the joint PDF of residuals 
in the event of additional measurement noise, lead quite naturally to a 
hypothesis testing formulation of the fault monitoring process. The 
knowledge of the effects of the fault on the Kalman filter innovations 
can be used to design a scheme that operates on two stages. The first 
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stage is a simple fault detection mechanism where the hypothesis that 
the generated residuals belong to the class c0: {no fault} against the 
hypothesis that they belong to an alternative faulty class c1: {zero 
mean correlated residuals}, will be tested. This mechanism performs par­
tial isolation of the failed parameter (since additional plant noise may 
also be present). On the sounding of an alarm from this first stage, 
the second stage mechanism is activated. This mechanism performs the 
functions of fault isolation, estimation of time of occurrence and size 
of fault and subsequent system reorganization. 

In all the subsequent sections of the paper the scalar output case 
is considered in order to evaluate the proposed scheme. 

a. Testing for the mean. 
The test statistic commonly used for testing, 

H0: y(k) = 0 against 
H1: y(k) = VI(k) t 0, k = i, ... , j; j>i. 

is the sample mean. An important disadvantage of this test however is 
that it is not robust in the case of correlated measurements [2]. The 
sign test is therefore proposed, which is a non-parametric test used to 
test hypotheses on the value of the median of a population [2]. Since 
the residuals are normal under all hypotheses, the median is equal to 
the mean and therefore this test can be applied to test for zero mean. 
The sign test procedure is as follows: the number of positive residuals 
in a window is calculated and compared to two thresholds which depend on 
the window size nw and probability of false detection Pt. Thus if, 

n1 <number of positive residuals < n2: accept Ho 
otherwise: reject H0 

The percentage points of the symmetric binomial distribution for 
different nw and Pf can be used for the sign test as follows: 

i. count the number of values above and below zero, say n+ and n-. 
ii. choose the smallest of the two values, say n+. 
iii. compare n+ with the entry of the table of symmetric binomial dis­

tribution percentage points for chosen nw and Pt, say na. 
iv. if n+ < na, reject H0; otherwise accept it. 

The sign test is much more robust in departures from independence 
than the corresponding sample mean test [3]. 

b. Testing for whiteness. 
Testing for whiteness is a common requirement for a number of iden­
tification algorithms that appear in the control literature. Methods 
requiring a large sample size (>500) as the plotting of the sample 
autocorrelation coefficients, hypothesis testing on the diagonal form of 
the correlation matrix, Stoica's test and others are inapplicable to the 
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case of on-line fault detection. Three tests for whiteness were inves­
tigated in [3] including two parametric and one nonparametric, i.e.: 

i. first order serial correlation test 
ii. sample variance ~2 test 
iii. rank correlation test. 

The rank correlation test did not perform at all well in two tested 
cases of additional plant and measurement noise, thus it is eliminated 
from the poss i b 1 e tests of independence even if the reason for the 
failure is not clear. The sample variance test requires a big amount of 
numerical calculations, thus it is not recommended for on-line implemen­
tations needed in the fault monitoring scheme. The first order serial 
correlation test of independence is finally adopted here for its 
simplicity and robustness. Also its null distribution is available for 
small window sizes [2]. The first order serial correlation of a filter 
residual window is defined by: 

j-1 6. . 6· . 

r (y(m) - y1 •J)(y(m+1) - y1•J)} 
n m=i 

r1 (6) 
n-1 j 

r (y(m) _ ~i,j)2 
m=i 

6 
where y is the sample mean. 

For small sample sizes (<20) more accurate forms may be used. 
Under the null hypothesis of whiteness the random variable r1 is dis­
tributed asymptoticallj normal with mean E(ri) = -1/(n-I) and variance 
var(r1) = (n-2) 2/(n-1) . Sampling experiments on serial correlation dis­
tributions suggest that in the null case norma 1 theory remains ap­
proximately valid even for nw=10 or 20, [2]. Confidence 1 imits for 
hypothesis testing can be found using normal distribution theory. The 
probabilities Pf and Pd are respectively given by: 

Pf = P[ IP1I > z.spf] 

Pd = 1 - (~[ -PI+ z,spf] - ~[ -PI - z.spf]} 

1 I~ 2 where Za is defined by P[Z>za] = --- e-.5z dz = a. 
J2n z 

and PI is the standardised normal (ri - f(ri))/var(ri) 112. 
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y. GLR tests 
In this case the two hypotheses may be written, 

H0 : y(k) = vo(k) 
HI : y(k) = Yo(k) + 9f{k, ~) 

where~ is the vector of unknown fault parameters (k, sy)· Since only 
H1 contains~. the GLR test statistic is [5], 

• • A Hl 
p(yl,J I HI ; ~) > 

Ag = p(yi,j I Ho ) < A 
Ho 

(7) 

To evaluate Ag one has to maximise the alternative hypothesis 
function, 

f(~) = p(yi,j I HI ; ~) (8) 

Using (3) and taking logarithms, 

-2lnf(~) = -2lnn(j,8-I) + lnlc~·kl + (y8,k)T(C~·k)-ly8,k +p(k-8+l)ln2n 

To maximise lnf(~), a double maximisation has to be performed. 
One way to do this is to fix 8=9 and minimise, 

-2lnf(9,sy) = -2lnn(j,9-I)+lnlcf9,kl+(y9,k)\cV•k)-ly9,k+p(k-9+I)ln2n 

for every 9 in the window. Equivalently we can minimise, 

f1(e,sy) = lnlc~·kl + (ye,k)T [cV•k]-1 ;a,k) 

since the remaining terms are constant. Let, 

and 

A A 
f(S,sy) = max f(S,sy) 

e,sy 

Then, since 
k 

-21nn(j,k) = [ {pln2n + ln(lc(m,m)i) + v2(m}c- 1(m,m)} 
m=j 

k 
(k-j+I)pln2n + E {ln(ic{m,m)i) + v2(m)c- 1{m,m)} 

m=j 

9-l 
-2lnn(j,S-l) = (9-j)pln2n + E {ln(ic{m,m)i) +v2(m)c- 1(m,m)} 

m=j 
we get the modified test statistic, 

(9) 



2lnAg = 2lnp(yi,j I H 1 ;~) - 2ln p(yi,j 

4. SIMULATION - CONCLUSIONS 

H1 
> 

H0) 2ln ;,. 
< 

Ho 

(10) 

The proposed fault monitoring methods were tested on the simulated 
stable first order system, 

x(k+1) = 0.7x(k) + w(k) 
y(k) = x(k) + v(k) 

with E{w(k)} = E{v(k)} = 0, E{w2(k)} = E{v2(k)} = 0.3, x(0)=5, x0=0, 
Po=0.5. Additional sensor noise of variance sy=1.9 was introduced at 
8=35. To i 11 ustrate the effect of additi anal sensor noise going un­
detected, a sample run was executed which shows an increase in the state 
estimate error variance (filter suboptimality). As shown in Fig.1 the 
sample error variance settles at 0.64, well below the true value of 
0.41. This verifies theoretical results on filter sensitivity [1). The 
length of the residual sliding window is a design value and is a 
tradeoff between high Pd and low Pf. For nw=30 and Pf=O.l the limits 
for the sign test are 1~ and 11 while the limits for r1 are 0.27 and 
-0.33. For the GLR test the threshold was chosen by simulation to be 
'11.=15. 

As seen from Figs. 2-6 the proposed scheme performed quite well. 
The first stage detectors worked well indicating zero mean throughout 
but correlation soon after the onset of fault. The second stage GLR 
detector correctly identifies the fault and estimates the size and time 
of occurrence. However, more work should be done in the direction of a 
more methodical approach to the evaluation of the critical design 
parameters Pf, Pd, nw and 'II.. Especially Pd is quite difficult to 
evaluate explicitly, since it is a funct1on of the alternative 
hypothesis and depends on the true value of the failed parameter. We 
believe that simulation studies could solve this problem. 
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