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Abstract

In this paper artificial neural networks are used with promising
results in a critical and at the same time very difficult problem
concerning the diagnosis of Gas Turbines blading faults. Neural
network-based fault diagnosis is treated as a Pattern Recognition
problem, based on measurements and feature selection. Emphasis
is given on the design of the appropriate neural network architec-
ture and the selection of the appropriate measuring instruments,
which are of critical importance for achieving good performance
(high success rates and generalization capabilities). Initially the
performance of the classical neural network architectures, namely
MultiLayer Perceptron (MLP), Learning Vector Quantization
(LVQ), Modular MultiLayer Perceptron and Radial Basis Func-
tion (RBF), is investigated for this problem. The implemented
neural network structures are trained to classify faulty and
healthy patterns coming from twelve different measuring instru-
ments. The performance of the above neural network structures is
investigated, and the diagnostic capabilities of the measuring
instruments are examined. Next, in order to improve the generali-
zation capabilities, which are critical for the specific diagnostic
problem, a new multinet architecture is developed, based on the
idea of “Majority Rule’ decision. Compared with the classical
architectures, this new multinet architecture is characterized by
higher generalization capabilities and robustness. A first ap-
proach to the design of the appropriate multinet architecture and
the selection of the appropriate measuring instruments in order to
provide the basis of a high performance automated diagnostic
system, is proposed. The conclusions derived are of more general
interest and applicability.

1. Introduction

Development of effective Gas Turbine Condition Monitor-
ing and Fault Diagnosis methods has been the target of
considerable research in recent years. This is due to the
high cost, sensitivity and importance of these engines for
most industrial companies. Most of this research is di-
rected towards the diagnosis of Gas Turbine blading faults,
because of the catastrophic consequences that these faults

can have, if they are not diagnosed in time. Even very
small blading faults can very rapidly grow and result to
huge destructions ([1], [2], [3]). Blading faults diagnosis is
regarded to be a very difficult problem, because of the
high levels of noise in all relevant measurements and the
high interaction between the numerous Gas Turbine blad-
ing rows. Therefore, it is very important to take advantage
of the processing power of modern computers, in order to
provide a fast and reliable engine condition diagnosis from
available measurements and to develop the highest possi-
ble level of intelligence and assistance to the operation and
maintenance personnel.

The Gas Turbine Blading Fault Diagnosis problem was
originally addressed in [4] and [5] based on classical pat-
tern recognition methods. In the present paper a neural
network approach is developed for this problem. A number
of different neural network architectures are implemented
for the classification of faulty and healthy patterns, coming
for twelve different measuring instruments. The first pur-
pose of this work is to evaluate the suitability of the vari-
ous neural network architectures for this important and
difficult diagnostic problem. Among the evaluated archi-
tectures are included both the classical ones (MLP, LVQ,
RBF) and a new multinet architecture based on the idea of
the ‘Majority Rule’ decision [6]. The second purpose is to
evaluate the diagnostic abilities of the investigated measur-
ing instruments for neural network (NN) - based diagnosis.
The above evaluations also include the generalizing abili-
ties of the implemented NN architectures, a very important
issue that has not been examined in the original approach.
The third purpose of this work is to suggest a way of se-
lecting the most appropriate neural network architectures
and measuring instruments in order to provide the basis of
an effective automated diagnostic system.

The outline of the paper is as follows: in Section 2, the
Gas Turbine Blading Fault Diagnosis problem is de-
scribed, as well as the specific faults to be diagnosed and
the type of instrumentation and measurements used. In
Section 3, the preprocessing of the measurement data is
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described, from which the corresponding pattern (feature
vector) is calculated. In Section 4, the implementation of
the neural network approach to the Blading Fault Diagno-
sis problem is described. In Section 5, the application of
the classical neural network architectures to the Gas Tur-
bine Fault Diagnosis problem is presented and the obtained
results are evaluated. In Section 6, a new multinet architec-
ture is developed and evaluated. Finally, the conclusions
derived from this work are given in Section 7.

2. The Gas Turbine Blading Fault Diagnosis Problem

The present work is based on data acquired from dynamic
measurements on an industrial gas turbine into which dif-
ferent faults were artificially introduced [1]. During the
experimental phase four categories of measurements were
performed simultaneously:

a) Unsteady internal wall pressure (using fast response
transducers P2 to P5)
b) Casing vibration (using accelerometers A1 to A6
mounted to the outside compressor casing)
c) Shaft displacement at compressor bearings (using trans-
ducer B)
d) Sound pressure levels (using double-layer microphone
M)

A schematic of the gas turbine illustrating the ar-
rangement of the measuring instruments is shown in Fig.
1.

Figure 1. Arrangement of the measuring instruments

Five experiments were performed, testing the datum
healthy engine and a similar engine with the following
four typical small (but quite rapidly growing, as mentioned
in the Introduction) and also not easily diagnosable faults:

Fault-1: Rotor fouling
Fault-2: Individual rotor blade fouling
Fault-3: Individual rotor blade twisted (by appr. 8 degs.)
Fault-4: Stator blade restaggering

Tests were performed at four different engine loads
(full load, half load, quarter load and no load), both for the
healthy engine as well as for the above four faults. At each
load, four series of time-domain data were acquired for
each instrument (two series in each of the two sampling
frequencies, l = 13 kHz and m = 32 kHz).

3. Preprocessing

Based on the conclusions of [1] and [2] the fault signatures
were initially calculated in the form of spectral difference
patterns, defined by the following expression:

P(f) = 20[log(sp(f)) – log(sph(f))] (1)

where P(f) is the spectral difference pattern, which is a
function of frequency f, sp(f) is the power spectrum of the
signal of the measuring instrument from a faulty engine,
and sph(f) is the signal spectrum from a healthy engine at
the same load, sampling frequency and measurement se-
ries. Also, according to the conclusions of [1] and [2], the
most useful diagnostic information is contained at the
harmonics of the shaft rotational frequency. This led to
filtering out the values of P(f) at frequencies other than the
shaft rotational frequency harmonics. The resulting pattern
from this filtering, Pr(f), is referred to as reduced spectral
difference pattern (and for simplicity ‘pattern’ in the fol-
lowing), and is given by the following equation:

Pr(f) = P(f)H(f) (2)

where H(f) = 1, if f is a rotational harmonic, and H(f) = 0,
for all other frequencies. Patterns were calculated for fre-
quencies up to the 27-th harmonic of the shaft rotational
frequency, i.e. patterns belong to a 27-dimensional space.
An example of the pattern calculation procedure described
above is shown in Fig. 2 for power spectra of unsteady
pressure transducer P2.

Figure 2. Pattern calculation procedure for power spectra
of unsteady pressure transducer P2.

4. Implementation of the Neural Network Ap-
proach

4.1 Characteristics of the Neural Network Architec-
tures

The neural network (NN) architectures initially selected
for the Blading Fault Diagnosis problem (MLP, LVQ,
RBF) have different structures and use different training
algorithms. They all belong to the family of feedforward
neural networks, and also have the same input and output
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layer dimensions. Input layer dimension, k, equals the one
of the pattern space, that is k = 27. Output layer dimension,
nc, equals the number of pattern classes representing
healthy and faulty engine conditions, that is nc = 5. Each
network output neuron, when active, corresponds to a spe-
cific engine condition. The mapping of pattern classes to
output neurons is as shown below in Table 1.

Table 1
Mapping of pattern classes to output neurons

output
neuron

1 2 3 4 5

Class Healthy
engine

Fault-1 Fault-2 Fault-3 Fault-4

In the implemented MLP structures, target values for a
pattern belonging in the i-th class, i = 1, 2, 3, 4, 5, are set
to 0.9 (active) for the i-th output neuron and to 0.1 (inac-
tive) for all other neurons. Use of upper and lower thresh-
old values was adopted in the interpretation of the con-
tinuous MLP network outputs, in order to increase the reli-
ability of the classifications, but at the price of lower suc-
cess rates. Namely, a pattern is classified to the i-th class,
if the output of the i-th neuron is greater than T1 = 0.8 and
all other neurons have activation values below the thresh-
old T2 = 0.2. If this is not happening for any of the classes,
the pattern is rejected i.e. cannot be reliably classified to
any of the classes. This scheme is similar to the T1&T2
rule described in [6] and will be referred to as T1&T2 in
the present work also. The T1&T2 scheme adopted for the
classification of the input patterns cannot deal with multi-
ple-fault conditions. The situation of simultaneous multi-
ple faults has not been considered in the work presented in
this paper, since it is highly unlikely in practice and also
no training data were available for such faults.

For reasons of simplicity and uniform interpretation of
classification results, target output values for the RBF
structures are set to those of the MLP structures. The same
holds regarding the use of the T1&T2 classification
scheme. LVQ networks have binary output neuron transfer
functions. Output values for a pattern classified in the i-th
class, are equal to 1 (active) for the i-th output neuron and
to 0 (inactive) for all other neurons. Therefore, a pattern
rejection scheme based on network output values cannot
be applied in the case of the LVQ network architecture.

4.2 Selection of Training and Test Pattern Sets

In practical situations, where the cost of measurements is
high, we are very much interested in the ability of a trained
neural network to generalize successfully. In order to ex-
amine the generalization abilities of the implemented net-
work architectures, the complete pattern set of each in-
strument was divided in two complementing subsets. The
first subset, formed by 63 patterns (7 healthy plus 14 for
each fault) selected randomly out of the 72 patterns of the
complete set was used as the training set, while its com-
plement formed by the remaining 9 patterns (1 healthy
plus 2 for each fault) was used as the test set for the spe-
cific instrument.

5. Results of Gas Turbine Fault Diagnosis with
Neural Networks

5.1 MLP architecture
For each of the twelve measuring instruments a three-
layered feedforward NN structure was trained to classify
patterns by means of a fast backpropagation algorithm
with epoch training, momentum and adaptive learning rate
([7], [8], [9]). The use of more hidden layers was investi-
gated, but it was found that one hidden layer with dimen-
sion h = 10 was sufficient for the specific learning tasks.
The logistic sigmoid was used as transfer function for the
hidden and output layer neurons, because it was found to
give the best results in terms of training speed, compared
to the alternatives of hyperbolic tangent for both layers, or
a combination of hyperbolic tangent and logistic sigmoid
transfer functions. Network weights and biases for both
hidden and output layers were initialized randomly from a
uniform distribution in the interval [-0.5, 0.5]. The training
procedure was considered successfully completed when
the summed square error between actual and desired net-
work outputs over the training set reached a predefined
error goal value. An error goal value of 0.05 has been ex-
perimentally found to be satisfactory for the specific learn-
ing tasks. A schematic diagram of the MLP architecture is
shown in Fig. 3.

Figure 3. MLP neural network architecture.

The required training times for all implemented
structures were, in the order of a few minutes. The classifi-
cation success rates over the training set, the test set and
the complete patterns set for all the twelve instruments
using the MLP architecture are shown in Fig. 4.
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Figure 4. Total classification success rates for the MLP
architecture
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It can be seen that the rates of success over the
training set are very high and reach 100% for all instru-
ments. This is not the case when the test set is considered,
where success rates are poor, varying from 33.3% for in-
strument P5 to 88.9% for instruments A2, A4 and A5.
Therefore, the generalizing capabilities of this architecture
are poor. The overall classification success rates (consider-
ing the complete patterns set) vary from 91.7% for instru-
ment P5 to 98.6% for instruments A2, A4 and A5. The
classification success rates, obtained over the complete
pattern set for the twelve instruments for each of the five
different pattern classes, are presented in Fig. 5.
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Figure 5. Classification success rates per class for the
MLP architecture.

These class success rates are a quantitative measure
of the diagnostic abilities of each instrument for each fault,
when the MLP architecture is used. It can be seen that the
healthy class is characterized by the lower success rate in
nearly all instruments (except P5), therefore by using the
MLP architecture there is a high probability of false
alarms.

5.2 LVQ Architecture

In order to improve the generalizing capabilities, a feed-
forward NN structure, trained with the Learning Vector
Quantization (LVQ) algorithm ([8], [9]) was implemented
for each of the twelve measuring instruments. Network
initial weight (class reference) vectors were randomly se-
lected among training set patterns of the corresponding
class. The learning rate parameter was set to η(t) = η(0) =
0.01, ∀t. Training was accomplished by random presenta-
tion of patterns up to a maximum number of 5000 presen-
tations. A schematic diagram of the LVQ architecture is
shown in Fig. 6.

Figure 6. LVQ neural network architecture

Training times obtained for this value of maximum
number of presentations were much smaller than in the
MLP architecture for all implemented structures (in the
order of 100 seconds). The classification success rates over
the training set, the test set and the complete pattern set for
the twelve instruments using the above LVQ architecture
are shown in Fig. 7.
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Figure 7. Total classification success rates for the LVQ
architecture.

It can be seen that the rates of success over the
training set are lower than in the MLP architecture and
take values above 95% for all instruments, except P5 and
B (with success rate values of 79.4% and 69.8%, respec-
tively). However, the rates of success over the test set are
much higher than in the MLP architecture, taking values
from 88.9% to 100% for all instruments, except for P5 and
B (whose success rates are 77.8% and 44.4%, respec-
tively). Therefore the generalizing ability of successfully
trained LVQ network architectures is much better com-
pared with the MLP architecture, a fact anticipated due to
the simplicity of the LVQ architecture. However the per-
formance of the LVQ architecture in the training set is
lower than the MLP architecture. The overall success rates
over the complete pattern set take values above 95% for all
instruments, except for P5 and B (whose success rates are
79% and 66.7%, respectively.

The classification success rates obtained over the com-
plete pattern set for the twelve instruments for each of the
five different pattern classes are presented in Fig. 8.
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Figure 8. Classification success rates per class for the
LVQ architecture.

It can be observed that the success rate achieved for
healthy class, as well as for faulty classes, are in most of
the cases high. We can see that instrument P5 has a very
low success rate in recognizing patterns of Fault-2 (which
is not a severe fault), which is responsible for the low
overall success rate achieved by this instrument. Also we
can see that instrument B has a very low success rate in
recognizing Fault-2 patterns, and also Fault-1 patterns (an-
other not very severe fault), which is responsible for the
low overall success rate achieved by instrument B. The
reason of these failures lies in the unsupervised nature of
the LVQ training algorithm allowing for self-organization,
that may not be successful for the case of less severe
faults, even for training set patterns. Therefore, the LVQ
architecture is not suitable for diagnosing less severe
faults.

5.3 Modular MLP architecture

In order to overcome the problems of the architectures
examined in 5.1 and 5.2, a modular NN structure [10],
consisting of two individual MLP networks, was imple-
mented for each of the twelve measuring instruments. The
first module is a single-output MLP network, trained to
distinguish between healthy and faulty patterns, while the
second module is trained to classify faulty patterns in the
right class. The network structures of these modules (hid-
den layer dimensions - neuron transfer functions), as well
as the initial weights and biases, were selected as described
in 5.1 for the non-modular MLP architecture. It was found
that for both modules a three-layered structure, with a di-
mension of h=5 for the hidden layer, was sufficient. Like-
wise, training was accomplished for each module by
means of the aforementioned fast backpropagation algo-
rithm. Error goal values of 0.02 and 0.05 for the first and
the second module, respectively, were experimentally
found to be satisfactory. A schematic diagram of the
modular MLP architecture is shown in Fig. 9.

Figure 9. Modular neural network architecture

Training times were in the order of seconds for all first
module structures, as expected from the small network
dimensions. For the second module structures training
times were also small, similar to those of the correspond-
ing non-modular MLP structures. The classification suc-
cess rates over the training set, the test set and the com-
plete patterns set for the twelve instruments are presented
in Fig. 10.

Modular
Total success rate (%)per instrument

0

20

40

60

80

100

A1 A2 A3 A4 A5 A6 P5 P4 P3 P2 M B

Training set

Test set

Overall

Figure 10. Total classification rates for the modular archi-
tecture.

We can see that success rate values over the training
set are generally high, above 98% for all instruments. Also
the success rates over the test set are higher than those of
the simple MLP architecture, but lower than those of the
LVQ architecture, taking values in the range of 66.7%, for
instruments A3, A5 and B, to 100% for instrument A2.
Success rates over the complete pattern set are generally
good, taking values above 94% for all instruments. The
classification success rates obtained over the complete
pattern set for the twelve instruments for each of the five
different pattern classes are presented in Fig. 11.
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Figure 11. Classification success rates per class for the
Modular architecture.

We can see that with this architecture, we do not en-
counter the problem of low success rates for instruments
P5 and B for the less severe Fault-2, which we had with
the LVQ architecture. Therefore, this architecture is much
better than LVQ in diagnosing less severe faults.

From the results presented above it can be concluded
that the modular MLP approach shows an overall satisfac-
tory performance, offering improved generalization abili-
ties in comparison to the MLP approach (see Fig. 1 and
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Fig. 5). Therefore the specialization of structures results in
a significant improvement of the overall performance.

5.4 Radial Basis Function Architecture

A Radial Basis Function (RBF) network architecture ([9],
[11]), designed with the Orthogonal Least Squares (OLS)
algorithm [12], was also implemented for each measuring
instrument. The objective was to examine if with this ar-
chitecture a better performance can be achieved, than with
the other architectures previously examined in 5.1 to 5.3.
Gaussian functions of the form,
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were added sequentially to the network’s hidden layer until
an acceptable representation error over the training set is
achieved. Their centers µj were selected among the train-
ing set patterns. A summed-square error goal value of 0.05
for all implemented structures was adopted experimentally
as an acceptable representation index. The values of vari-
ance σj suitable for the specific problem had to be found
experimentally by the designer. A value of variance σj was
selected so that the spread (distance between 0.5 cross-
overs) of the basis functions was set to 60. The need for
such wide spread basis functions can be explained by the
necessity to span the 27-dimensional input space with a
relatively small number of available training patterns. A
schematic diagram of the RBF architecture is shown in
Fig. 12.

Figure 12. RBF neural network architecture.

The number of basis functions needed to design a
network of satisfactory performance ranged from h=40
(for instrument P2) to h=58 (for instruments P4 and P5),
corresponding to training times of 40 and 75 seconds, re-
spectively. The classification success rates obtained over
the training, the test and the complete patterns set for the
twelve instruments with the implemented RBF network
architectures are shown in Fig. 13.
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Figure 13. Total classification success rates for the RBF
architecture.

We can see that the rate of success for the training
set patterns reaches 100% for all instruments. However,
the success rates over the test set are much lower and only
for 3 out of the 12 instruments exceed 66%, showing an
overall poor generalization performance. A possible reason
for this is the inadequacy of the training set population
related to the high dimensional pattern space. RBF net-
works construct local approximations to nonlinear input-
output mapping and therefore may not be able to general-
ize well in regions of the pattern space where no training
data are available. The overall classification success rates
for the complete pattern set vary from 88.9% (for instru-
ment P5) to 97.2% (for instrument A6). The classification
success rates obtained over the complete pattern set for the
twelve instruments for the five different pattern classes are
presented in Fig. 14.

RBF
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Figure 14. Classification success rates per class for the
RBF architecture.

6. Development of a Multinet Architecture for
Automated Diagnosis

The basic requirement for an efficient diagnostic system is
to provide detailed diagnostic information with the highest
possible reliability, with the least possible training (be-
cause the measurements required for this training are usu-
ally very costly) and the highest possible generalization
capabilities. In case of a NN-based diagnostic system, the
level of satisfaction of the above requirement for a specific
problem depends critically on the selection of the measur-
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ing instruments and NN architectures most suitable for this
problem.

For the Gas Turbine Blading Fault Diagnosis problem,
which is studied in the present paper, a first step towards
the development of an efficient NN-based diagnostic sys-
tem could be the selection of this particular "measuring
instrument/NN architecture" scheme, achieving the highest
overall classification success rate over the complete pat-
terns set. From the results obtained in the previous sections
it was observed that the use of an LVQ architecture for
instrument P3 or the use of a Modular MLP architecture
for instrument A2 lead to an overall success rate of 100%
(see Fig. 3 and Fig. 5, respectively). Between these two
schemes, the “A2/Modular" scheme should be finally se-
lected, because the external measurement A2 of the casing
vibration is much easier and less costly to be implemented
than the internal measurement P3 of the unsteady pressure.

In order to study in more detail the generalization ca-
pabilities of the above selected diagnostic scheme, an al-
ternative training procedure was carried out with a smaller
training set. In this procedure, the training set was formed
by 54 patterns (6 healthy plus 12 for each fault) selected
randomly from the complete pattern set, while the remain-
ing 18 patterns (2 healthy plus 4 for each fault) composed
the test set. Because of this reduction of the training set (54
patterns instead of the initial 63 patterns), the diagnostic
task becomes now more difficult.

The classification success rates obtained over the train-
ing set and the complete pattern set for the five different
pattern classes using the above "A2/Modular" scheme are
shown in Fig. 15.

A2/Modular
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Figure 15. Performance of the “A2/Modular” scheme for a
smaller training set.

It can be observed that the classification success rates
for Healthy and Fault-1 patterns over the complete pattern
set decrease significantly and reach 75% and 81%, respec-
tively. This result shows that the reliability of the
"A2/Modular NN"-based diagnostic system decreases sig-
nificantly if the training set becomes smaller.

In order to achieve high performance and generaliza-
tion capabilities with small training sets (which is usually
the case in the industrial reality), a more flexible approach
to the development of a NN-based system for the Gas Tur-
bine Blading Fault Diagnosis problem (and generally for

all highly complex and difficult diagnostic problems) can
be adopted, based on the synthetic use of a small number
of ‘‘measuring instrument/NN architecture’’ schemes with
complementing diagnostic abilities.

The main criteria for the selection of measuring in-
struments should be the maximization of diagnostic per-
formance and the minimization of the total instrumentation
cost (both initial and maintenance cost). This practically
means that a small number of easy measurements, which
are sensitive to the fault we want to diagnose, should be
selected. In our specific problem, casing vibration, emitted
sound and shaft displacement at the compressor bearings
are measurements easy to implement (the latter being one
of the most usual diagnostic measurements in Gas Tur-
bines), and also as concluded in the previous sections, sen-
sitive to blading faults. Therefore, accelerometers, micro-
phone and bearing instruments were selected in order to
develop the NN-based diagnostic system.

Concerning the selection of NN architectures, as it was
concluded in Section 5, NN architectures trained with su-
pervised learning algorithms (MLP, Modular MLP, RBF)
achieve successful classification of training set patterns at
rates reaching 100%, while successfully trained LVQ ar-
chitectures possess very good generalization properties.
Also, RBF networks trained with the OLS method are
characterized by the easiest and most straightforward de-
sign and training procedure among all the examined super-
vised NN architectures. Therefore, suitable combinations
of LVQ and RBF NN architectures, synthesized in a mul-
tinet architecture, are expected to achieve high diagnostic
performance and generalization capabilities, offering also
the advantage of simpler design and training compared to
the classical MLP NN approaches.

There exist a number of different possible schemes for
the above synthesis of different NN architectures and the
design of a multinet architecture. A voting scheme, based
on the idea of the 'Majority Rule' proposed in [6], was de-
veloped in order to make the final decision regarding the
gas turbine condition, when a number of different architec-
tures-classifiers (voters) are used in parallel. The structure
of this multinet architecture is shown in Fig. 16 when three
independent NN classifiers, each trained to classify pat-
terns from a specific instrument, are synthesized in a vot-
ing scheme. As it can also be seen from Fig. 16, according
to the majority rule the gas turbine condition is assigned to
class i if the majority (at least two) of the classifiers 'vote'
for this class, i.e. classify their input pattern to class i.

By examination of the results of the previous sections,
it was found that the synthesized use of the schemes
"M/LVQ", "A3/LVQ" and "B/RBF", in a multinet archi-
tecture based on the majority rule results in 100% success
for all classes, when the initial training set of 63 patterns is
used. This is shown in Fig. 17, where we can see the clas-
sification success rates obtained over the complete pattern
set for the five different pattern classes with each of the
three classifiers-voters and also with this multinet architec-
ture.
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Figure 16. The Multinet architecture

Next the smaller training set of 54 patterns that was
previously described for the “A2/Modular” scheme was
used for the training of each of the voters “M/LVQ”,
“A3/LVQ” and “B/RBF”. The classification success rates
obtained over the complete pattern set for the five different
pattern classes with each of the three voters and with the
multinet architecture are shown in Fig. 18.
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Figure 17. Performance of the three voters and the multi-
net classifier.
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Figure 18. Performance of the three voters and the multi-
net classifier for a smaller training set.

Therefore, by decreasing the training set the perform-
ance of the multinet architecture does not decrease (as in
the case of the "A2/Modular" scheme), but is maintained at
high levels, achieving a success rate of 100% for all

classes. Conclusively, the multinet architecture achieves
superior performance by successfully synthesizing the in-
dependent classifiers-voters, resulting in more reliable
classifications.

From the above it can be concluded that the proposed
multinet architecture provides a useful basis for the devel-
opment of an automated diagnostic system with high per-
formance, reliability, robustness and generalization capa-
bilities with small training sets. It should also be men-
tioned that these features are achieved with a small number
of easy to implement measurements, a matter of great
practical importance in the industrial reality.

7. Conclusions

Initially a number of classical neural network architectures
have been evaluated for the Gas Turbine Blading Fault
Diagnosis problem, which is regarded to be one of the
most critical and at the same time difficult diagnostic prob-
lems, for 12 measuring instruments and 4 typical blading
faults. As criteria for this evaluation were considered a
number of issues, such as structural simplicity, training
algorithm effectiveness and overall performance (success
rates and generalization capabilities).

The MLP architecture relies critically on the experi-
mental selection of a number of design parameters. The
success rates of the MLP architecture are found to be satis-
factory in the training set, but the generalizing abilities of
this architecture are inadequate. The LVQ architecture
offers the advantage of a very simple topology. Also be-
cause of the absence of a hidden layer and the uniquely
defined competitive output layer, there is no need of an
experimental network design. The generalizing ability of
successfully trained LVQ network structures is found to be
very good. On the other hand LVQ, being an algorithm
allowing for self-organization, is not successful for less
severe faults even for the training set patterns, as it was
observed in some cases. The Modular MLP architecture
shows improved generalization abilities compared to the
original MLP architecture. Finally the RBF architecture,
trained by the OLS algorithm, offers the advantage of a
short design procedure. The success rates of the RBF ar-
chitecture are satisfactory over the training set, but it
shows an overall poor generalization performance in the
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high dimensional pattern space of the present diagnosis
problem.

In order to improve the generalization abilities shown
by the above classical architectures, a new multinet archi-
tecture was developed. As criteria for the design of this
multinet architecture were used the maximization of diag-
nostic performance and the minimization of the total in-
strumentation cost. A multinet classifier based on the idea
of the ‘Majority Rule’ decision was developed, as a com-
bination of two LVQ and one RBF network architectures
based on instruments A3, M and B, respectively. The re-
sults obtained using this multinet architecture were very
promising, showing that it can provide a useful basis for an
automated diagnostic system of high accuracy, reliability,
generalization capabilities and robustness to variations of
training data. Further research is conducted toward the
development of a systematic multinet classifiers design
methodology, for the selection of the appropriate neural
network architectures and measuring instruments to be
used as the basis of an automated diagnostic system with
desirable characteristics.
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