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 

Abstract—This paper deals with the advantages of robust 

control in smart structures. First we present the 

implementations of H infinity control in the frequency domain. 

A dynamic model for smart structure under wind excitations is 

considered. Then robust control theory is used a model to 

synthesize controllers achieving stabilization with guaranteed 

performance for smart structures. We use μ-analysis to express 

the control problem as a mathematical optimization problem 

and then find the controller that solves the optimization 

problem in the frequency domain. 

 
Index Terms—Frequency Domain, Robust Performance, 

Robust Stability, Smart Structures, Structural Control, Μ-

Analysis. 

 

I. INTRODUCTION 

The trend of engineering design requires structures to 

become lighter, more flexible and stronger, so in recent 

years, the light structures have been widely used in various 

engineering applications [1]. The use of active control 

techniques for the suppression of vibrations of very light 

structures is a very important target in many applications, 

where the additional masses of stiffeners or dampers should 

be avoided. Active techniques are also more suitable in 

cases where the disturbance to be cancelled or the properties 

of the controlled system vary with time [2]. In practice, any 

structure that deforms under some loading can be regarded 

as flexible structure and is a distributed parameter system. 

This implies that vibration at one point is related to vibration 

at the rest of the points over the structure [3]. Therefore, in 

order to measure the complicates response of the structure 

and base on the control action, it is desirable to use 

appropriate sensors and actuators. Piezoelectric sensors and 

actuators are extensively employed in many practical 

applications such as smart structures due to their lightness 

and their capability of coupling strain and electric fields. In 

order to control structural vibrations, piezoelectric sensors 

and actuators can be easily bonded on the vibrating structure 

[4]-[6]. Robust control theory and m-analysis   has the 

advantage over classical control techniques in that they are 

readily applicable to problems involving multivariate 

systems with cross-coupling between channels. 
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Simultaneously optimizing robust performance and robust 

stabilization is difficult. One method that comes close to 

achieving this is m-analysis, which allows the control 

designer to apply classical loop-shaping concepts to the 

multivariable frequency response to get good robust 

performance, and then optimizes the response near the 

system bandwidth to achieve good robust stabilization [7].  

The Bode's integrals are used to approximate the derivatives 

of amplitude and phase of the plant model with respect to 

the frequency. Simulation examples illustrate the 

effectiveness and the simplicity of the proposed method to 

design the robust controllers [7]-[9]. 

This work is concerned with active vibration reduction of 

a smart beam, mounted rigidly along one edge to form a 

cantilever structure [10]-[12]. The beam, with piezoelectric 

sensor/actuator pairs bonded to its surfaces, is modeled 

using the super-convergent FE approach which includes 

extension, bending and rotation degrees of freedom [4], [5], 

[10]. For designing a controller, a structure consists of a 

cantilever beam with four surface bonded piezoelectric pairs 

is considered. The patches are used as actuators and sensors 

and they are attached symmetrically to either side of the 

beam, thus collocating the actuator and sensor.  The 

parameters of the beam are shown in Table I. For the 

analysis of the cantilevered composite structure, a super-

convergent finite element (FE) model is used [4], [6], [13], 

[14]. 

 
TABLE I: PARAMETERS OF THE SMART BEAM 

Beam length, L 0.8m 
Beam windth, W 0.08m 

Beam thickness, h 0.0093m 
Beam density, ρ 1800kg/m3 

Young’s modulus of the beam, E 1.5 Χ 1011 N/m2 
Piezoelectric constant, d31 254 Χ 10−12 m/V 

Electric constant, ξ33 11.5 Χ 10−3 V m/N 
Young’s modulus of the piezoelectric element 1.5 Χ 1011 N/m2 

Width of the piezoelectric element bS= ba= 0.07m 

Thickness of the piezoelectric element hS= ha= 0.0002m 

 

II. MODELLING 

The dynamical description of the smart structure is given 

by, 

 

          t + t + t = t + tm eMq Dq Kq f f                            (1)
 

 

Where M is the generalized mass matrix, D the viscous 

damping matrix, K the generalised stiffness matrix, fm the 

external loading vector and fe the generalised control force 

vector produced by electromechanical coupling effects. For 
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a model simplified beam model of a composite beam with 

piezoelectric sensors and actuators the independent variable 

vector q(t) is composed of transversal deflections wi and 

rotations ψi, i.e for [10], [11], [15], 
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where n is the number of finite elements used in the 

analysis. Vectors w and fm are positive upwards. 

To transform to state-space control representation, let (in 

the usual manner), 
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Furthermore to express fe(t) as Bu(t) we write it as 
*

e
f u

, 

where 
*

e
f

 is the piezoelectric force for a unit applied on the 

corresponding actuator, and u represents the voltages on the 

actuators.  Lastly d(t)=fm(t) is the disturbance vector.  Then, 
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We can augment this with the output equation. For example, 

if we assume that displacements are only measured then, 

 

           
T

1 3 n-1y t = x t x t  …x t = tCx
 (3) 

 

With, 
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In this formulation u is n×1 (at most, but can be smaller), 

while d is 2n×1. The units used are m, rad, sec and N. 

The control problem is to keep the beam in equilibrium 

(i.e. zero displacements and rotations) in the face of external 

disturbances, noise and model inaccuracies, using the 

available measurements (displacement) and controls [16], 

[12], [13]. 

III. FREQUENCY DOMAIN DATA 

To relate the smart structure in frequency domain we use 

Fig. 1, 
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Fig. 1. Closed loop diagram in the frequency domain 

 

In this diagram are included all inputs and outputs of 

interest, along with their respective weighs.  

d represent the external disturbances vector of our system 

(like wind or earthquakes), n is the noise of the system due 

the uncertainty of the model, B and G represent the matrices 

of (2), x is the state vector of the system, Ks is the 

controller, y represent the output vector and W are the 

necessary vectors of the weight, Wu for the controller, Wn 

for the noise, Wd for the disturbances and Wy for the 

outputs, and finally F(s) is the necessary transfer function. 

We need to find this    transfer functions [14], [16], [17]:  

 

Fw y y y d K y d y K
y = W Jx = W JFv = W JF GW d + Bu = W JFGW d + W( JFBu)

 

w u K
u = W u

 
 

n n n d K n d K n
y = Cx + W n = CFv + W n = CF GW d + Bu + W n = CFGW d n( ) + CFBu + W

 

Combining all these gives, 
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Note that the plant transfer function matrix, F(s), is 

deduced from the suitably reformulated plant equations, 

 

 
     x t = Ax t + Iv t

 

   y t Ix t
 

 

where v(t)=Gd+Buk. Hence, 
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Using the H infinity control theory, the equivalent two-port 

diagram in the closed loop system is Fig. 2, 
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Fig. 2. Closed loop system, two port diagram 

 

with, 
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where z are the output variables to be controlled (the control 

vector and the state vector), and w the exogenous inputs (the 

disturbances and the noise vector) 

Given that P has two inputs and two outputs it is, as 

usual, naturally partitioned as, 
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Also, 

 

     u s = K s y s
 (6) 

 

Using (4) the transfer function for P is, 

 

 
 
 
 
  

u

y d y

d n

0 0 W

P(s) = W JFGW 0 W JFB

CFGW W CFB
 (7) 

 

while the closed loop transfer function Mzw(s) is, 

 

  -1
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 (8) 

 

Equation (8) is the well-known lower LFT for Mzw. 

To express P in state space form, the natural partitioning 

[18]-[20], 
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is used (where the packed form has been used, while the 

corresponding form for Κ is, 
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Equation (10) defines the equations, 
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and, 
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To find the matrices involved, we break the feedback loop 

and use the relevant equations. 

Therefore, the equations relating the inputs, outputs, 

states and input/output to the controller are [14], [15]: 
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By taken dw, nw και yF from (11) we have, 
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Therefore, the matrices are: 
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IV. EXTERNAL DISTURBANCES 

We use the wind force in our smart structures Fig 3. The 

wind load is a real life wind speed measurement in 

relevance with time that took place of Heraklion Crete. We 

transform the wind speed in wind pressure with, loading 

corresponds to the wind excitation. The function d(t)= fm(t) 

has been obtained from the wind velocity record, through 

the relation 

 

2
m u

1
f (t) = ρC V (t)

2  (17) 

 

where V=velocity, ρ=density and Cu=1.5 (orthogonical 

cross-section) 
 

 
Fig. 3. Wind load 

 

Moreover, in all simulations, random noise has been 

introduced to measurements at system output locations 

within a probability interval of ±1%. Due to small 

displacements of system nodal points, noise amplitude is 

taken to be small, of the order of 5 × 10–5 of the initial 

prices. On the other hand, the signal is introduced at each 

node of the beam by a different percentage, that percentage 

being lower at the first node due to the fact that the beam 

end point is clamped [12], [15], [18]. 

A. Results without Weights 

In the simplest approach no weights are placed on any of 

the input/output quantities. This means that the H infinity 

(H∞) controller ensures [20]-[22], 
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Figs. 4-5 show the results of this run. 
 

 
Fig. 4. Closed loop Tzw for all frequencies 

 

 
Fig. 5. Max singular values for closed and open loop 

 

Fig. 4 shows that the price of the singular value of the 

unweighted system is very small for all frequencies (much 

lower than one). Fig. 5 shows a satisfactory effect of the 

disturbance on the size of the control scheme (the design 

could be improved, if it were possible to reduce noise effect 

for frequencies of 1000 Hz). There are no difference is 

observed between the frequency plots of open and closed 

loop for the unweighted system.  

 

B. Results with weights 

Next we try constant weights, in particular let, 

Wn=10-8, Wu=1/500, We=103 

Figs. 6-7 promises a marked improvement in performance 

Fig.6 shows that the value of Tzw is low then one for all 

frequencies.  
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Fig. 6. Closed loop Tzw for all frequencies 

 

 
Fig. 7. Max singular values for closed and open loop 

 

Fig. 7 shows a satisfactory effect of the disturbance on the 

size of the control scheme (the design could be improved, if 

it were possible to reduce noise effect for frequencies of 

1000 Hz). There are no difference is observed between the 

frequency plots of open and closed loop system. 

As shown in Fig. 7a, there is a significant improvement in 

the effect of disturbance on error up to the frequency of 

1000 Hz. In Fig. 13a, there seems to be little effect of noise 

on error for frequencies beyond 1000 Hz. In Fig. 7b, shows 

a satisfactory effect of the disturbance on the size of the 

control scheme (the design could be improved, if it were 

possible to reduce noise effect for frequencies of 1000 Hz).  

 

V. ROBUSTNESS ISSUES 

The superiority of H infinity control lies in its ability to 

take explicitly into account the worst effect of unknown 

disturbances and noise in the system.  Furthermore, at least 

in theory, it is possible to synthesize a controller that is 

robust to a prescribed amount of modeling errors.  

Unfortunately, this last possibility is not implementable in 

some cases, as it will be subsequently illustrated [19]-[21]. 

In what follows, the robustness to modeling errors of the 

designed H infinity controller will be analyzed. Furthermore, 

an attempt to synthesize a μ-controller will be presented, and 

comparisons between the two will be made [ 21].   

Numerical models used in all simulations, are 

implemented in three ways [18]: 
  

   1. Through (11), 
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and subsequent evaluation of matrix N for specific values of 

kp, mp from zero to one. 

K0 and M0 represent the nominal vector of the Stiffness 

and the Mass matrices, I is the identity matrix, δΜ and δΚ 

represent the uncertainty. The norm of uncertainty must be 

less than one. Alternatively, since in general, 
 

D = αK + βM
 

 

D could be expressed similarly to K, M, as, 
 

 0 p 2n×2n D
D = D I + d I δ

 
 

In this way we introduce uncertainty in the form of 

percentage variation in the relevant matrices.  This 

expression for uncertainty is suitable in our case, uncertainty 

is most likely to arise from terms outside the main matrices 

(since length can be adequately measured). 

Here it will be assumed, 
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hence mp, kp are used to scale the percentage value and the 

zero subscript denotes nominal values. 

    2. By use of Matlab’s “uncertain element object”. As 

explained, this form is needed in the D-K 

robust synthesis algorithm. 

  3. By Simulink implementation of Fig. 8, 

 

 
Fig. 8. Simulink diagram of uncertain plant 
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Robust analysis is carried out through the relations: 

 

 


Δ 11
ω

supμ N (jω) < 1
 (12) 

 

(for robust stability), and, 
 

 


aΔ
ω

supμ N(jω) < 1
 (13) 

 

for robust performance. 

In all the simulations that follow the disturbance is the 

mechanical load 10N at the free end of the structures. 
 

VI. RESULTS FOR µ-ANALYSIS 

First of all we take mp=0, kp=0.9.  This corresponds to a 

±90% variation from the nominal value of the stiffness 

matrix K.  

In Fig. 9 are shown the displacement responses for this 

controller for the first mechanical input.  In Fig. 10 are 

shown the bounds on the μ values. As seen the system 

remains stable and exhibits robust performance, since the 

upper bounds of both values remain below 1 for all 

frequencies of interest. This result is validated in Fig. 11, 

where the displacement of the free end and the voltage 

applied are shown at the extreme uncertainty.  Comparison 

with the open loop response for the same plant shows the 

good performance of the nominal controller. 
 

 
Fig. 9. Displacement response, 10Ν at free end, μ-controller for mp=0, 

kp=0.9 
 

 
Fig. 10. μ-bounds of the H∞ controller for mp=0, kp=0.9 

 

 
Fig. 11. Displacement and control at free end for the H∞ controller with 

mp=0, kp=0.9(extreme values) 

 

VII. RESULTS FOR ROBUST SYNTHESIS: Μ-CONTROLLER 

A μ-controller can be synthesized via the procedure of D-

K iteration. As explained, this an approximate procedure, 

providing bounds on the μ-value.  To facilitate comparison 

with the H infinity controller, similar bounds for the 

uncertainty will be used [14], [15]. 

I. mp=0, kp=0.9.  This corresponds to a ±90% variation 

from the nominal value of the stiffness matrix K. 

where A0_u, B0_u and G0_u are uncertain matrix objects. 

This command produces a robust controller of order 256.  

This is an enormous value, which is a result of the way this 

algorithm works.  However, even though this fact is 

mentioned in the literature, it is not given the appropriate 

attention, and is definitely a shortcoming.  To our 

knowledge, there is no easy way to lower the order, unless a 

tedious manual approach is used. 

In Fig. 12 μ-values of the calculated controller are shown.  

As seen the controller is robust in most frequencies. 

In Fig. 13 performance of the μ and H infinity controllers 

is compared at the free end (this is indicative of overall 

performance). As seen the H infinity controller performs 

better at the expense of increased control effort.  Fig. 14 (left 

window) verifies this result, where it is seen that the H 

infinity controller fares better at the extreme value. This 

could be due to numerical difficulties in the calculation of 

the μ-controller arising from the bad condition number of 

the plant.  It could also be due to the high order of the μ-

controller. In any case, further investigation is needed. 
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Fig. 12. μ-bounds of the μ-controller for mp=0, kp=0.9 

 

 
Fig. 13. Comparison of free end data of nominal system for μ-controller 

(mp=0, kp=0.9) and H∞ 

 

 

 
Fig. 14. Displacement and control at free end for the μ-controller with 

mp=0, kp=0.9 (extreme values) 

 

VIII. CONCLUSIONS 

In this paper, a robust control design problem has been 

formulated within a linear fractional transformation 

framework using the Hinfinity and μ-analysis technique. A 

suboptimal controller has been used for numerical modeling. 

The open loop and the   closed-loop controlled system has 

been simulated using a periodic impulsive command input, 

periodic isolated influences. The mathematical model 

derived using robust control is compared with models 

obtained by more conventional and well known methods. 

Using this model, a Hinfinity controller is designed for 

vibration suppression purposes. An optimal controller is the 

trained using nonconvex and nonsmooth optimization to 

mimic the previous controller, μ- analysis technique has the 

advantage over classical control techniques in that they are 

readily applicable to problems involving multivariate 

systems with cross-coupling between channels. 

Simultaneously optimizing robust performance and robust 

stabilization is difficult. One method that comes close to 

achieving this is μ-analysis, which allows the control 

designer to apply classical loop-shaping concepts to the 

multivariable frequency response to get good robust 

performance, and then optimizes the response to achieve 

good robust stabilization. 
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